DOI QR코드

DOI QR Code

어레이 안테나 장착을 위한 단순화된 주익 구조의 복합재 모자형 보강재 최적설계

Optimal Design of the Composite Hat-shaped Stiffeners for Simplified Wing Box with Embedded Array Antenna

  • 박승현 (충남대학교 항공우주공학과 대학원) ;
  • 김인걸 (충남대학교 항공우주공학과) ;
  • 이석제 (충남대학교 항공우주공학과 대학원) ;
  • 전우철 (국방과학연구소)
  • 투고 : 2012.12.05
  • 심사 : 2012.12.25
  • 발행 : 2012.12.31

초록

정찰 및 감시를 위한 어레이 안테나가 내장된 날개는 컷아웃이 수반되기 때문에 구조성능이 저하된다. 본 논문에서는 단순화된 복합재 날개에 어레이 안테나 탑재시 안테나성능 저하와 날개구조 성능 저하를 최소화할 수 있는 복합재 모자형 보강재의 두께에 대해 최적설계를 수행하였다. 최적의 모자형 보강재 형상 선정을 위하여 모자형 보강재의 웹 경사도와 플랜지의 길이에 변화를 주어 상용 유한요소해석 프로그램을 이용하여 구조 해석을 수행하였다. 복합재 모자형 보강재형상에 대하여 응력과 좌굴에 대한 구속조건으로 상용 최적화 프로그램인 VisualDOC와 상용 유한요소해석 프로그램을 이용하여 최적화를 수행하여 보강재의 두께를 결정하였다.

The structural performance is degraded in case of embedding the array antenna for reconnaissance and surveillance into the wing skin structures. In this paper, the optimal design for the thickness of composite hat-shaped stiffener which is reinforced embedded array antenna on the simplified composite wing box was conducted. To select the basic shape of hat-shaped stiffener, structural analysis was carry out using the commercial finite element analysis program while changing the web slope and flange length of hat-shaped stiffener. The optimal thickness of the composite hat-shaped stiffeners was determined by using commercial optimization program such as VisualDOC and commercial FEA program with considering stresses and buckling constraints.

키워드

참고문헌

  1. Daliri, A., Wang, C.H., John, S., Galehdar, A., Rowe, W.S.T., Ghorbani, K., and Callus, P.J., "FEA Evaluation of the Mechanical and Electromagnetic Performance of Slot Log-Spiral Antennas in Conformal Load-Bearing Antenna Structure," SPIE Smart Structures and Materials Proceedings of the ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Vol. 1, 2008, pp. 613-624.
  2. Dai, F., and Du, S., "Analysis of the Mechanical and Electrical Performance of Conformal Load-Bearing Antenna Structure," Industrial and commercial applications of smart structures technologies, SPIE Smart Structures and Materials ASME International Conference on Manufacturing Science and Engineering, Vol. 2, 2010, pp. 17-20.
  3. Callus, P.J., Conformal load-bearing antenna structure for Australian Defence Force Aircraft, Australian Defence Force, Australia, 2007
  4. Koto, N., Science of Antenna, Jeonpagwahak Co., Seoul, Korea, 1987
  5. You, C.S., Hwang, H.C., Lee, R.M., and Park, W.S., "Microstrip antenna for SAR application with composite sandwich construction : surface antenna-structure demonstration," Industrial and commercial applications of smart structures technologies, Journal of Composite Materials, Vol. 37, No. 4, 2003, pp.351-364. https://doi.org/10.1177/0021998303037004333
  6. Joe, J.S., Goo, N.S., Park, H.C., and Yoon, K.J., "Design, Analysis and Test of Smart Skin structure with a round shape antenna," Proceeding of the Korean Society for Composite Materials, Korea, May. 2007, pp. 46-50.
  7. Merlin, P.W., IKHANA, NASA, USA, 2009
  8. Hwang, C.H., and Joo, J.H., "Initial Design of Simplified Composite Wing Box Structure," Journal of the Korean Society for Composite Materials, Vol. 10, No. 4, 1997, pp. 11-17.
  9. Lee, M.G., Cho, C.M., Jang, S.Y., and Jun, S.M., "Carbon Composite Material Selection Study for High Aspect Ratio Wing," Proceeding of the Korean Society for Aeronautical and Space Sciences, Pyeongchang, Korea, Apr. 2007, pp. 282-285.
  10. Jian, Z., "Parametric Study on Buckling Behavior of Composite Hat-Stiffened Panels under Uniaxial Compression," International Conference on Computer Engineering and Technology, Vol. 5, 2010, pp. 565-568.
  11. Vanderplaats, G.N., Numerical Optimization Techniques for Engineering Design, McGraw-Hill, Inc., 1984.