DOI QR코드

DOI QR Code

A Study on the Mechanical Properties and Specific Resistivity of Reaction-Bonded Silicon Carbide According to α-SiC of Various Mixed Particle Size

반응소결 탄화규소의 다양한 α-SiC 조성에 따른 기계적 특성과 전기저항 특성에 관한 연구

  • 김영주 ((주)디에스테크노 부설연연구소) ;
  • 박영식 ((주)디에스테크노 부설연연구소) ;
  • 정연웅 ((주)디에스테크노 부설연연구소) ;
  • 송준백 ((주)디에스테크노 부설연연구소) ;
  • 박소영 ((주)디에스테크노 부설연연구소) ;
  • 임항준 (한국산업기술대학교 신소재공학과)
  • Received : 2012.01.05
  • Accepted : 2012.12.13
  • Published : 2012.12.31

Abstract

For the manufacture of low resistance Si-SiC composite, the properties of reaction sintering in the green body of various mixed ${\alpha}$-SiC powder size with the various carbon contents from 0wt% to 20wt% were investigated. The samples preparation was green body by CIP method under this condition, molten silicon infiltration process was conducted to reaction bonded silicon carbide. the results of sintered density, 3-point bending strength and resistance of analysis showed that varied carbon and silicon melt reacted to convert to fine ${\beta}$-SiC particle and the structure was changed to dense material. The amount of fine ${\beta}$-SiC particle was gradually increased as carbon content increase. According to mixed composite, it's mechanical and specific resistivity properties was strongly influenced by carbon content within 10wt% more then carbon content 10wt% was strongly influenced by phase transition.

저저항 Si-SiC 소결체 제조를 위해 ${\alpha}$-SiC에서 조성과 C의 양을 변화시키면서 반응소결 특성을 고찰하였다. 시료준비는 정수압으로 성형체를 제조하였고, 용융Si 반응소결을 통해 시험편을 준비하였다. 반응소결체의 미세구조, 기계적 특성 및 전기저항 분석 결과 용융Si과 반응 후 미립의 ${\beta}$-SiC가 생성되었고, 치밀한 소결체를 형성하였다. 미립 ${\beta}$-SiC 생성량은 카본 양 에 따라 증가하였다. 그리고 C함량 10wt%이내에서 기계 R전기저항특성은 입도조성 영향이 크고 카본 함량 10wt%이상에서는 상전이 반응의 영향이 큼을 알 수 있었다.

Keywords

References

  1. Sawyer, G.R., and Page, T.F., "Microstructural Characterization of "REFEL" (reaction-bonded) Silicon Carbide," Journal of Materials Science, Vol. 13, No. 4, 1978, pp. 885-904. https://doi.org/10.1007/BF00570528
  2. Popper, P., "The Preparation of Dense Self-Bonded Silicon Carbide," Special Ceramics, Hey-wood, Londen, 1960, pp. 209-219.
  3. Pampuch, R., Warasek, E., and Bialoskorski, J., "Reaciontion Mechanism in Carbon-Liquid Silicon Systems at Elevated Temperature," Ceramics International, Vol. 12, No. 2, 1986, pp. 99-106. https://doi.org/10.1016/0272-8842(86)90023-4
  4. Forrest, C.W., Kennedy, F., and Shennan, J.V., "The Fabrication and Properties of Self-Bonded Silicon Carbide Bodies," Special Ceramics, 1972, pp. 99.
  5. Mehan, R.L., "Effect of SiC Content and Orientation on the Properties of Si/SiC Ceramic Composite," Journal of Materials Science, Vol. 13, No. 2, 1978, pp. 358-366. https://doi.org/10.1007/BF00647781
  6. Lim, C.B., and Iseki, T., "Transport of Fine-Grained ${\beta}$-SiC in SiC/Liquid Si Sytem," Advanced Ceramic Materials, Vol. 3, No. 3, 1988, pp. 291-293. https://doi.org/10.1111/j.1551-2916.1988.tb00221.x
  7. Lim, C.B., and Iseki, T., "Strength of Reaction Sintered SiC Heterogeneously Containing Fine-Grained ${\beta}$-SiC," Journal of Materials Science, Vol. 23, No. 9, 1988, pp. 3248-3253. https://doi.org/10.1007/BF00551301
  8. Jeong, S.J., and Yoon, J.D., "반응소결법에 의한 탄화규소 소결체의 제조공정 변수에 관한 고찰," Journal of The Korean Ceramic Society, Vol. 9, No. 6, 1994, pp.630-636.
  9. Park, J.H., Yim, E.T., Sung, J.S., Choi, H.J., and Lee, J.S., "A Study on the Si-SiC Composites Fabricated by Pressureless Powder Packing Forming Method," Journal of The Korean Ceramic Society, Vol. 32, No. 6, 1995, pp. 710-718.

Cited by

  1. Effect of Si Addition on Resistivity of Porous SiC-Si Composite for Heating Element Application vol.25, pp.5, 2015, https://doi.org/10.3740/MRSK.2015.25.5.258
  2. Mechanical and Electrical Properties of Si-SiC Fabricated Using SiC-C Composite Powders Synthesized by Sol-gel Process vol.51, pp.5, 2014, https://doi.org/10.4191/kcers.2014.51.5.459