DOI QR코드

DOI QR Code

Molecular Cloning, Gene Structure, Expression, and Enzyme Activity of a Serine Protease from Water Scorpion, Laccotrephes japonensis (Hemiptera: Nepidae)

  • Park, Kwan Ho (National Academy of Agricultural Science (NAAS), RDA) ;
  • Choi, Young Cheol (National Academy of Agricultural Science (NAAS), RDA) ;
  • Nam, Seong Hee (National Academy of Agricultural Science (NAAS), RDA) ;
  • Hwang, Jae Sam (National Academy of Agricultural Science (NAAS), RDA) ;
  • Nho, Si Kab (College of Agriculture and Life science, Kyungpook National University)
  • 투고 : 2012.10.31
  • 심사 : 2013.01.03
  • 발행 : 2012.12.31

초록

Serine proteases are major insect enzymes involved in the digestion of dietary proteins and in the process of blood meal digestion. In this study, cDNA was constructed using the whole body of Laccotrephes japonensis. The flanking sequences of the 5- and 3- end of this gene were characterized by RACE-PCR. Sequence analysis showed that this gene contained a 963-bp ORF encoding 320 amino acids. The deduced amino acid sequence showed 62% identity with the Creontiades dilutus serine protease, 58% with the Lygus lineolaris trypsin precursor, and 54% with the Triatoma infestans salivary trypsin. To assess the expression of the L. japonensis serine protease (JGsp), the JGsp gene was cloned into a baculovirus transfer vector, pBac-1, and expressed in Sf9 cells (Spodoptera frugiperda). SDS-PAGE and western blot analysis have shown that the JGsp recombinant protein was a monomer with a molecular weight of about 32 kDa. Recombinant JGsp has shown activity in the protease enzyme assay using gelatin as a substrate.

키워드

참고문헌

  1. Agusti N, Cohen AC (2000) Lygus hesperus and L-lineolaris (Hemiptera: Miridae), phytophages, zoophages, or omnivores: Evidence of feeding adaptations suggested by the salivary and midgut digestive enzymes. J Entomol Sci 35, 176-186. https://doi.org/10.18474/0749-8004-35.2.176
  2. Barrett AJ, Rawlings ND (1995) Families and clans of serine peptidases. Arch Biochem Biophys 318, 247-250. https://doi.org/10.1006/abbi.1995.1227
  3. Barrett AJ, Rawlings ND, Woessner JF (1998) Handbook of Proteolytic Enzymes. Academic Press. New York.
  4. Barrett AJ, Rawlings ND, Woessner JF (2003) Handbook of Proteolytic Enzymes. Academic Press, New York.
  5. Cohen AC (1993) Organization of digestion and preliminary characterization of salivary trypsin-like enzymes in a predaceous Heteropteran, Zelus-Renardii. J Insect Physiol 39, 823-829. https://doi.org/10.1016/0022-1910(93)90114-7
  6. Colebatch G, East P, Cooper P (2001) Preliminary characterisation of digestive proteases of the green mirid, Creontiades dilutus (Hemiptera : Miridae). Insect Biochem Mol Biol 31, 415-423. https://doi.org/10.1016/S0965-1748(00)00136-3
  7. Colebatch G, Cooper P, East P (2002) cDNA cloning of a salivary chymotrypsin-like protease and the identification of six additional cDNAs encoding putative digestive proteases from the green mirid, Creontiades dilutus (Hemiptera: Miridae). Insect Biochem Mol Biol 32, 1065-1075. https://doi.org/10.1016/S0965-1748(02)00044-9
  8. Eldridge R, O'Reilly DR, Miller LK (1992) Efficacy of a baculovirus pesticide expressing an eclosion hormone gene. Biol Control 2, 104-110. https://doi.org/10.1016/1049-9644(92)90033-A
  9. Elvin CM, Whan V, Riddles PW (1993) A family of serine-protease genes expressed in adult buffalo fly (Haematobia-irritans-exigua). Mol Gen Genet 240, 132-139.
  10. Gatehouse AMR, Norton E, Davison GM, Babbe SM, Newell CA, Gatehouse JA (1999) Digestive proteolytic activity in larvae of tomato moth, Lacanobia oleracea; effects of plant protease inhibitors in vitro and in vivo. J Insect Physiol 45, 545-558. https://doi.org/10.1016/S0022-1910(98)00161-9
  11. Gorman MJ, Andreeva OV, Paskewitz SM (2000) Sp22D: a multidomain serine protease with a putative role in insect immunity. Gene 251, 9-17. https://doi.org/10.1016/S0378-1119(00)00181-5
  12. Herrero S, Combes E, Van Oers MM, Vlak JM, de Maagd RA, Beekwilder J (2005) Identification and recombinant expression of a novel chymotrypsin from Spodoptera exigua. Insect Biochem Mol Biol 35, 1073-1082. https://doi.org/10.1016/j.ibmb.2005.05.006
  13. Houseman J (1978) A thiol-activated digestive proteinase from adults of Rhodinus prolixis Stal (Hemiptera: Reduviidae). Canadian J Zoology 56, 1140-1143. https://doi.org/10.1139/z78-157
  14. Houseman JG, Downe AER (1981) Identification and partial characterisation of digestive proteinases from Triatoma phyllosoma pallidipennis Stal (Hemiptera: Reduviidae). Comp Biochem Physiol 70B, 713-717.
  15. Houseman JG, Downe AER (1983) Cathepsin D-like activity in the posterior midgut of hemipteran insects. Comp Biochem Physiol 75B, 509-512. https://doi.org/10.1016/0300-9629(83)90413-9
  16. Jiang QJ, Hall M, Noriega FG, Wells M (1997) cDNA cloning and pattern of expression of an adult, female-specific chymotrypsin from Aedes aegypti midgut. Insect Biochem Mol Biol 27, 283-289. https://doi.org/10.1016/S0965-1748(97)00001-5
  17. Kim SY, Jeong EJ, Song KJ, Park KS (2009) Molecular cloning and characterization of a serine protease-like protein from silkworm (Bombyx mori). Genes Genome 31, 387-395. https://doi.org/10.1007/BF03191257
  18. Kraut J (1977) Serine proteases: structure and mechanism of catalysis. Annu Rev Biochem 331-358.
  19. Laurema S, Varis AL, Miettinen H (1985) Studies on enzymes in the salivary glands of Lygus rugulipennis (Hemiptera, Miridae). Insect Biochem 15, 211-224. https://doi.org/10.1016/0020-1790(85)90010-1
  20. Lehane SM, Assinder SJ, Lehane MJ (1998) Cloning, sequencing, temporal expression and tissue-specificity of two serine proteases from the midgut of the blood-feeding fly Stomoxys calcitrans. Eur J Biochem 254, 290-296. https://doi.org/10.1046/j.1432-1327.1998.2540290.x
  21. Mori A, Ohba S (2004) Field observations of predation on snakes by the giant water bug. Bull Herpetol Soc 2004, 78-81.
  22. Nagano I, Wu ZL, Nakada T, Boonmars T, Takahashi Y (2003) Molecular cloning and characterization of a serine proteinase gene of Trichinella spiralis. J Parasitol 89, 92-98. https://doi.org/10.1645/0022-3395(2003)089[0092:MCACOA]2.0.CO;2
  23. Ohba S (2007) Notes on predators and their effect on the survivorship of the endangered giant water bug, Kirkaldyia deyrolli (Heteroptera : Belostomatidae), in Japanese rice fields. Hydrobiologia 583, 377-381. https://doi.org/10.1007/s10750-006-0488-2
  24. Ohba S, Nakasuji F (2006) Dietary items of predacious aquatic bugs (Nepoidea : Heteroptera) in Japanese wetlands. Limnology 7, 41-43. https://doi.org/10.1007/s10201-006-0161-5
  25. Ohba S, Nakasuji F (2007) Density-mediated indirect effects of a common prey tadpole on interaction between two predatory bugs: Kirkaldyia deyrolli and Laccotrephes japonensis. Popul Ecol 49, 331-336. https://doi.org/10.1007/s10144-007-0051-7
  26. Overney S, Yelle S, Cloutier C (1998) Occurrence of digestive cysteine proteases in Perillus bioculatus, a natural predator of the Colorado potato beetle. Comp Biochem Physiol B 120, 191-196. https://doi.org/10.1016/S0305-0491(98)10008-1
  27. Paskewitz SM, Gorman MJ (1999) Mosquito immunity and malaria parasites. Am Entomol 80-94.
  28. Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol R 62, 597.
  29. Terra WR, Ferreira C (1994) Insect Digestive Enzymes - Properties, Compartmentalization and Function. Comp Biochem Physiol B 109, 1-62. https://doi.org/10.1016/0300-9629(94)90307-7
  30. Terra WR, Ferreira C, Jordao BP, Dillon, R.J. (1996) Digestive enzymes. In: Lehane, MJ, Billingsley, PF (Eds.), Biology of the Insect Midgut Chapman & Hall, London 153-194.
  31. Yan J, Cheng QY, Li BB, Aksoy S (2001) Molecular characterization of two serine proteases expressed in gut tissue of the African trypanosome vector, Glossina morsitans morsitans. Insect Mol Biol 10, 47-56. https://doi.org/10.1046/j.1365-2583.2001.00232.x
  32. Zhu YC, Baker JE (1999) Characterization of midgut trypsin-like enzymes and three trypsinogen cDNAs from the lesser grain borer, Rhyzopertha dominica (Coleoptera : Bostrichidae). Insect Biochem Mol Biol 29, 1053-1063. https://doi.org/10.1016/S0965-1748(99)00081-8