DOI QR코드

DOI QR Code

Recombinant Expression and Enzyme Activity of Chymotrypsin-like Protease from Black Soldier Fly, Hermetia illucens (Diptera: Stratiomyidae)

  • Received : 2012.11.08
  • Accepted : 2013.01.02
  • Published : 2012.12.31

Abstract

Chymotrypsin serine protease is one of the main digestive proteases in the midgut of and is involved in various essential processes. In a previous study, a gene encoding a chymotrypsin-like protease, Hi-SP1, was cloned from the larvae of Hermetia illucens and characterized. In this study, we produced the recombinant chymotrypsin-like protease Hi-SP1 in Escherichia coli cells. The molecular weight of the recombinant Hi-SP1 was estimated to be approximately 26 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western-blotting. Chymotrypsin activity was detected when AAPF was used as the substrate. Examination of the effects of temperature and pH revealed that the proteolytic activity of recombinant Hi-SP1 decreased markedly at temperatures above $30^{\circ}C$, and the optimum pH was found to be 10.0.

Keywords

References

  1. Balti R, Bougherra F, Bougatef A (2012) Chymotrypsin from the hepatopancreas of cuttlefish (Sepia officinalis) with high activity in the hydrolysis of long chain peptide substrates: Purification and biochemical characterisation. Food Chem 130, 475-484. https://doi.org/10.1016/j.foodchem.2011.07.019
  2. Blow DM (1971) The structure of chymotrypsin, Vol. 3. New York: Academic Press.
  3. Bondari K, Sheppard DC (1981) Soldier fly larvae as feed in commercial fish production. Aquaculture 24, 103-109. https://doi.org/10.1016/0044-8486(81)90047-8
  4. Diener S, Zurbrugg C, Tockner K (2009) Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates. Waste Manage Res 27, 603-610. https://doi.org/10.1177/0734242X09103838
  5. Graf L, Szilagyi L, Venekei I (1998) Chymotrypsin. San Diego, Academic Press
  6. Herrero S, Combes E, Van Oers MM, Vlak JM, de Maagd RA, Beekwilder, J (2005) Identification and recombinant expression of a novel chymotrypsin from Spodoptera exigua. Insect Biochem Molec 35, 1073-1082. https://doi.org/10.1016/j.ibmb.2005.05.006
  7. James MT (1935) The genus Hermetia in the United States (Diptera: Stratiomyidae). Bull Brooklyn Entomol Soc 30, 165-170.
  8. Kim JG, Choi YC, Choi JY, Kim WT, Jeong GS, Park KH, Hwang SJ (2008) Ecology of the black soldier fly, Hermetia illucens (Diptera: Stratmyidae) in Korea. Kor J Appl Entomol 47, 337-343. https://doi.org/10.5656/KSAE.2008.47.4.337
  9. Kim JI (1997) Newly recording two exotic insects species from Korea. J Kor Biota 2, 223-225.
  10. Kim W, Bae S, Kim A (2011) Characterization of the molecular features and expression patterns of two serine proteases in Hermetia illucens (Diptera: Stratiomyidae) larvae. Bmb Rep 44, 387-392. https://doi.org/10.5483/BMBRep.2011.44.6.387
  11. Klomklao S, Benjakul S, Visessanguan W, Kishimura H, Simpson BK (2007) Trypsin from the pyloric caeca of bluefish (Pomatomus saltatrix). Comp Biochem Phys B 148, 382-389.
  12. Lee MJ, Anstee JH (1995) Endoproteases from the midgut of larval Spodoptera littoralis include a chymotrypsin-like enzyme with an extended binding-site. Insect Biochem Molec 25, 49-61. https://doi.org/10.1016/0965-1748(94)00042-G
  13. Lord WD, Goff ML, Adkins TR, Haskell NH (1994) The black soldier fly Hermetia illucens (Diptera: Stratiomyidae) as a potential measure of human postmortem interval: observations and case histories. J Forensic Sci 39, 215-222.
  14. Mazumdar-Leighton S, Broadway RM (2001) Identification of six chymotrypsin cDNAs from larval midguts of Helicoverpa zea and Agrotis ipsilon feeding on the soybean (Kunitz) trypsin inhibitor. Insect Biochem Molec 31, 633-644. https://doi.org/10.1016/S0965-1748(00)00168-5
  15. McCallan E (1974) Hermetia illucens (L.) (Diptera: Stratiomyidae), a cosmopolitan American species long established in Australia and New Zealand. Entomol Mo Mag 109, 232-234.
  16. Newton GL, Booram CV, Barker RW, Hale OM (1977) Dried Hermetia illucens larvae meal as a supplement for swine. J Anim Sci 44, 395-400. https://doi.org/10.2527/jas1977.443395x
  17. Noriega FG, Wells MA (1999) A molecular view of trypsin synthesis in the midgut of Aedes aegypti. J Insect Physiol 45, 613-620. https://doi.org/10.1016/S0022-1910(99)00052-9
  18. Rawlings ND, Barrett AJ (1994) Families of Serine Peptidases. Proteolytic Enzymes: Serine and Cysteine Peptidases 244, 19-61. https://doi.org/10.1016/0076-6879(94)44004-2
  19. Sheppard DC, Newton GL, Thompson SA (1994) A value added manure management system using the black soldier fly. Bio resource Tech 50, 275-279. https://doi.org/10.1016/0960-8524(94)90102-3
  20. Simpson, BK and Haard, NF (1984) Trypsin from Greenland cod, Gadus ogac. Isolation and comparative properties. Comp Biochem Physiol 79.
  21. Terra WR, Ferreira C (1994) Insect Digestive Enzymes - Properties, Compartmentalization and Function. Comp Biochem Phys B 109, 1-62. https://doi.org/10.1016/0300-9629(94)90307-7
  22. Terra WR, Ferreira C, Jordao BP, Dillon RJ (1996) Digestive enzymes. London: Chapman and Hall.
  23. Tomberlin JK, Sheppard DC (2002) Factors influencing mating and oviposition of black soldier flies (Diptera: Stratiomyidae) in a colony. J Entomol Sci 37, 345-352. https://doi.org/10.18474/0749-8004-37.4.345
  24. Tomberlin JK, Sheppard DC, Joyce JA (2005) Black soldier fly (Diptera: Stratiomyidae) colonization of pig carrion in South Georgia. J Forensic Sci 50, 152-153.
  25. Tomberlin JK, Peter HA, Heidi MM (2009) Black Development of the black soldier fly (Diptera: Stratiomyidae) in relation to temperature. Environ Entomol 38, 930-934. https://doi.org/10.1603/022.038.0347

Cited by

  1. Evidence of two mechanisms involved in Bacillus thuringiensis israelensis decreased toxicity against mosquito larvae: Genome dynamic and toxins stability vol.176, 2015, https://doi.org/10.1016/j.micres.2015.04.007
  2. Antioxidant activities of black soldier fly, Hermetia illucens vol.52, pp.2, 2014, https://doi.org/10.7852/jses.2014.52.2.142
  3. The black soldier fly, Hermetia illucens - a promising source for sustainable production of proteins, lipids and bioactive substances vol.72, pp.9, 2017, https://doi.org/10.1515/znc-2017-0030
  4. Structural and Functional Characterization of Hermetia illucens Larval Midgut vol.10, pp.None, 2012, https://doi.org/10.3389/fphys.2019.00204
  5. Ontogenic development of the digestive enzymes and chemical composition of Hermetia illucens larvae of different ages vol.169, pp.7, 2021, https://doi.org/10.1111/eea.13063
  6. Upcycling of manure with insects: current and future prospects vol.7, pp.5, 2021, https://doi.org/10.3920/jiff2020.0093