DOI QR코드

DOI QR Code

Genotypic Investigation of Multidrug-Resistant Pseudomonas aeruginosa from Clinical Isolates in Korea, 2010

2010년도 국내 임상에서 분리한 다제내성 녹농균의 유전자형 조사

  • Received : 2012.11.02
  • Accepted : 2012.12.14
  • Published : 2012.12.31

Abstract

Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium that causes serious infection, particularly in immunocompromised patients. Also, P. aeruginosa possessing carbapenem-resistant metallo-${\beta}$-lactamases (MBL) has been reported with increasing frequency in Korea. We therefore analyzed the level of multidrug-resistant clinical P. aeruginosa isolated from a secondary hospital in Korea in 2010. A total of 92 isolates of P. aeruginosa were collected from Sahmyook Medical Center in 2010. Susceptibility to antimicrobial agents was determined by analysis of the minimum inhibitory concentration test; the inhibitor-potentiated disk diffusion (IPD) test was performed for MBL detection. RAPD-PCR was used for genotyping to rapidly characterize P. aeruginosa strains isolated from clinical patients. The percentages of non-susceptible isolates were as follows: 40.2% to ceftazidime, 58.7% to meropenem, 56.5% to gentamicin, 46.7% to tobramycin, 62.0% to ciprofloxacin and 97.8% to chloramphenicol. The 29 multidrug-resistant strains were screened by the IPD test: of the 21 PCR-positive isolates, 19 were IPM-1 producers and 2 were VIM-2 producers. Among the 19 IMP-1-producing P. aeruginosa isolates, 16 isolates showed similar patterns, and three different banding patterns were observed. The proportion of IMP-1-producing multidrug-resistant P. aeruginosa from clinical isolates steadily increased in this secondary hospital in Korea in 2010. This study provides information about the antimicrobial-resistant patterns and genotype of multidrug-resistant P. aeruginosa isolated from clinical isolates in Korea, 2010.

녹농균은 특히 면역이 저하된 환자에게서 심각한 감염을 일으키는 그람음성의 기회감염 균주이다. 또한 carbapenem 내성 metallo-${\beta}$-lactamases (MBL)를 가진 녹농균이 한국에서 증가되는 추세로 보고되고 있다. 따라서 본 실험에서는 2차 병원인 삼육 서울 병원에서 수집된 총 92종의 임상 녹농균의 다재내성 수준을 분석하였다. 항생제에 대한 감수성은 최소억제농도(MIC) 분석에 의해 결정되었고, inhibitor-potentiated disk diffusion(IPD) 분석은 MBL 검출을 위해 수행되었다. RAPD-PCR은 임상환자에서 분리한 녹농균 계통의 유전적 유형의 특징을 밝히기 위해 사용되었다. 그 결과 임상에서 분리된 녹농균의 40.2%는 ceftazidime에 내성을, 58.7%는 meropenem에 내성을, 56.5%는 gentamicin에 내성을, 46.7%는 tobramycin에 내성을, 62.0%는 ciprofloxacin에 내성을 그리고 97.8%는 chloramphenicol에 내성을 보였다. IPD 분석에 의해 29종의 다재내성 균주로 관찰 되었고, RAPD 분석에 의해 19종은 IPM-1 유전자형을, 2종은 VIM-2 유전자형을 만들었다. MBL 유전자 검출 시험을 통해 19종의 IMP-1 생성 녹농균 중에서 16종이 유사한 유전자형을 보였고, 3종은 다른 유전자형이 관찰되었다. 임상에서 분리한 IMP-1 생성 다재내성 녹농균의 비율은 꾸준히 증가하고 있다. 이번 연구는 2010년 국내 임상에서 분리한 녹농균의 항생제 다제내성 패턴과 유전자형에 대한 정보를 제공한다.

Keywords

References

  1. Anna, S.L., Antonio, A.B., Juliana, P., Marcio, V.S., Ivan, S.M., Erico, G.A., Edison, I.M., and Silvia, F.C. 1999. Intravenous colistin as therapy for nosocomial infections caused by multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Clin. Infect. Dis. 28, 1008-1011. https://doi.org/10.1086/514732
  2. Bush, K. 1998. Metallo-${\beta}$-lactamases: a class apart. Clin. Infect. Dis. 27, 48-53. https://doi.org/10.1086/514922
  3. Chu, Y.-W., Afzal-Shah, M., Houang, E.T., Palepou, M.I., Lyon, D.J., Woodford, N., and Livermore, D. 2001. IMP-4, a novel metallo-${\beta}$ -lactamase from nosocomial Acinetobacter spp. collected in Hong Kong between 1994 and 1998. Antimicrob. Agents Chemother. 45, 710-714. https://doi.org/10.1128/AAC.45.3.710-714.2001
  4. Clinical and Laboratory Standards Institute (CLSI). 2007. Performance standards for antimicrobial susceptibility testing; seventh informational supplement 27. Suit, USA, 98-114.
  5. Fernandez-Cuenca, F., Martinez-Martinez, L., Conejo, M.C., Ayala, J.A., Perea, E.J., and Pascual, A. 2003. Relationship between ${\beta}$-lactamase production, outer membrane protein and penicillinbinding protein profiles on the activity of carbapenems against clinical isolates of Acinetobacter baumannii. J. Antimicrob. Chemother. 51, 565-574. https://doi.org/10.1093/jac/dkg097
  6. Gibb, A.P., Tribuddharat, C., Moore, R.A., Louie, T.J., Krulicki, W., Livermore, D.M., Palepou, M.F., and Woodford, N. 2002. Nosocomial outbreak of carbapenem-resistant Pseudomonas aeruginosa with a new blaIMP allele, $blaI_{MP-7}$. Antimicrob. Agents Chemother. 46, 255- 258. https://doi.org/10.1128/AAC.46.1.255-258.2002
  7. Iyobe, S., Kusadokoro, H., Ozaki, J., Matsumura, N., Minami, S., Haruta, S., Sawai, T., and O'Hara, K. 2000. Amino acid substitutions in a variant of IMP-1 metallo-${\beta}$-lactamase. Antimicrob. Agents Chemother. 44, 2023-2027. https://doi.org/10.1128/AAC.44.8.2023-2027.2000
  8. Jeon, B.C., Jeong, S.H., Bae, I.K., Kwon, S.B., Lee, K., Young, D., Lee, J.H., Song, J.S., and Lee, S.H. 2005. Investigation of a nosocomial outbreak of imipenem-resistant Acinetobacter baumannii producing the OXA-23 beta-lactamase in Korea. J. Clin. Microbiol. 43, 2241- 2245. https://doi.org/10.1128/JCM.43.5.2241-2245.2005
  9. Kim, J.H., Jeong, S.H., Kim, B.N., Jeong, T.J., Kim, T.S., Kim, J.C., and Jeon, B.C. 2002. Genotypes of metallo-${\beta}$-lactamase produced by imipenem-resistant Acinetobacter spp. isolates from clinical specimens. Korean J. Infect. Dis. 34, 360-366.
  10. Kim, J.R., Lee, D.K., An, H.M., Kim, M.J., Lee, S.W., Cha, M.K., Lee, K.O., and Ha, N.J. 2011. Antimicrobial activity of commonly used antibiotics and DNA fingerprint analysis of Pseudomonas aeruginosa obtained from clinical isolates and unchlorinated drinking water in Korea, 2010. Arch. Pharm. Res. 34, 1353-1361. https://doi.org/10.1007/s12272-011-0816-6
  11. Kim, I.S., Oh, W.I., Song, J.H., and Lee, N.Y. 2004. Screening and identification of metallo-${\beta}$-lactamase gene in clinical isolates of imipenem-resistant Pseudomonas aeruginosa. Korean J. Lab. Med. 24, 177-182.
  12. Koeuth, T., Versalovic, J., and Lupski, J.R. 1995. Differential subsequence conservation of interspersed repetitive Streptococcus pneumoniae BOX elements in diverse bacteria. Genome Res. 5, 408- 418. https://doi.org/10.1101/gr.5.4.408
  13. Landman, D. and Quale, J. 2002. Pseudomonas aeruginosa and Acinetobacter baumannii: pathogens of the millennium. Ochsner Clinic Reports on Serious Hospital Infection. 14, 1-7.
  14. Lee, K., Ha, G.Y., Shin, B.M., Kim, J.J., Kang, J.O., Jang, S.J., Yong, D., Chong, Y., and Korean Nationwide Surveillance of Antimicrobial Resistance (KONSAR) group. 2004. Metallo-${\beta}$-lactamase-producing Gram-negative bacilli in Korean nationwide surveillance of antimicrobial resistance group hospitals in 2003: continued prevalence of VIM-producing Pseudomonas spp. and increase of IMP producing Acinetobacter spp. Diagn. Microbiol. Infect. Dis. 50, 51-58.
  15. Lee, K., Lim, J.B., Yum, J.H., Yong, D., Chong, Y., Kim, J.M., and Livermore, D.M. 2002. blaVIM-2 Cassette-containing novel integrons in metallo-${\beta}$-lactamase-producing Pseudomonas aeruginosa and Pseudomonas putida isolates disseminated in a Korean hospital. Antimicrob. Agents Chemother. 46, 1053-1058. https://doi.org/10.1128/AAC.46.4.1053-1058.2002
  16. Lee, K.W., Park, A.J., Moon, Y.K., Lee, H.J., Cho, J.H., Kang, J.O., Yong, D.G., Chong, Y.S., and KONSAR group. 2009. Metallo-${\beta}$-lactamase-producing Pseudomonas spp. in Korea: High prevalence of isolates with VIM-2 type and rmergence of isolates with IMP-1 type. Yonsei Med. J. 50, 335-339. https://doi.org/10.3349/ymj.2009.50.3.335
  17. Levasque, C., Piche, L., Larose, C., and Roy, P.H. 1995. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob. Agents Chemother. 39, 185-191. https://doi.org/10.1128/AAC.39.1.185
  18. Livermore, D.M. 2002. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin. Infect. Dis. 34, 634-640. https://doi.org/10.1086/338782
  19. Livermore, D.M. and Woodford, N. 2000. Carbapenemases: a problem in waiting? Curr. Opin. Microbiol. 3, 489-495. https://doi.org/10.1016/S1369-5274(00)00128-4
  20. Oh, E.J., Lee, S., Park, Y.J., Park, J.J., Park, K., Kim, S.I., Kang, M.W., and Kim, B.K. 2003. Prevalence of metallo-beta-lactamase among Pseudomonas aeruginosa and Acinetobacter baumannii in a Korean university hospital and comparison of screening methods for detecting metallo-beta-lactamase. J. Microbiol. Methods 54, 411- 418. https://doi.org/10.1016/S0167-7012(03)00090-3
  21. Riccio, M.L., Franceschini, N., Boschi, L., Caravelli, B., Cornaglia, G., Fontana, R., Amicosante, G., and Rossolini, G.M. 2000. Characterization of the metallo-${\beta}$-lactamase determinant of Acinetobacter baumannii AC-54/97 reveals the existence of $bla_{IMP}$ allelic variants carried by gene cassettes of different phylogeny. Antimicrob. Agents Chemother. 44, 1229-1235. https://doi.org/10.1128/AAC.44.5.1229-1235.2000
  22. Senda, K., Arakawa, Y., Nakashima, K., Ito, H., Ichiyama, S., Shimokata, K., Kato, N., and Ohta, M. 1996. Multifocal outbreaks of metallobeta- lactamase-producing Pseudomonas aeruginosa resistant to broad-spectrum beta-lactams, including carbapenems. Antimicrob. Agents Chemother. 40, 349-353.
  23. Tam, V.H., Chang, K.T., LaRocco, M.T., Schilling, A.N., McCauley, S.K., Poole, K., and Garey, K.W. 2007. Prevalence, mechanisms, and risk factors of carbapenem resistance in bloodstream isolates of Pseudomonas aeruginosa. Diagn. Microbiol. 58, 309-314. https://doi.org/10.1016/j.diagmicrobio.2007.05.006
  24. Walsh, T.R., Toleman, M.A., Poirel, L., and Nordmann, P. 2005. Metallo- ${\beta}$-lactamases: the quiet before the storm? Clin. Microbiol. 18, 306-325. https://doi.org/10.1128/CMR.18.2.306-325.2005
  25. Yong, D.G. 2009. Metallo-${\beta}$-lactamase producing Gram-negative Bacilli. Korean J. Clin. Microbiol. 12, 103-109. https://doi.org/10.5145/KJCM.2009.12.3.103
  26. Yong, D., Lee, K., Yum, J.H., Shin, H.B., Rossolini, G.M., and Chong, Y. 2002. Imipenem-EDTA disk method for differentiation of metallo-beta-lactamase-producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. J. Clin. Microbiol. 40, 3798-3801. https://doi.org/10.1128/JCM.40.10.3798-3801.2002
  27. Zhiyong, Z., Xiaoju, L., and Yanyu, G. 2003. Metallo-${\beta}$-lactamases of non-fermenting Gram-negative bacteria. Rev. Med. Microbiol. 14, 79 -93. https://doi.org/10.1097/00013542-200307000-00002