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Abstract 

This work aims to present a theoretical analysis of the electric and magnetic surface current densities of a circular 
microstrip antenna (CMSA) as a body of revolution.

The rigorous analysis of these problems begins with the application of the equivalence principle, which introduces 
an unknown electric current density on the conducting surface and both unknown equivalent electric and magnetic 
surface current densities on the dielectric surface. These current densities satisfy the integral equations (IEs) obtained 
by canceling the tangential components of the electric field on the conducting surface and enforcing the continuity 
of the tangential components of the fields across the dielectric surface. The formulation of the radiation problems is 
based on the combined field integral equation. This formulation is coupled with the method of moments (MoMs) as 
a numerical solution for this equation.

The numerical results of the electric and magnetic surface current densities on the outside boundary of a CMSA 

excited by -11TM  and -21TM  modes are presented. The radiation pattern is calculated numerically in the two principle 

planes for a CMSA and gives a good results compared with measured results published by other research workers.
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Ⅰ. Introduction

A microstrip antenna (MSA) consists of a very thin 

metallic strip (patch) placed on a small fraction of a wa-

velength above a ground plane and separated from the 

ground plane by a dielectric sheet. The radiating ele-

ments and the feed line are usually photoetched on the 

dielectric substrate. The radiating patch may be square, 

rectangular, circular, or any other geometry. These patch 

shapes are the most common because of their ease of 

analysis and fabrication. The feed line is often a con-

ducting strip, usually of a smaller width; however, co-

axial line feeds, where the inner conductor is attached to 

the radiating patch, are also widely used [1].

The radiation of patch antennas is efficient only when 

the excitation is made at the resonant frequency of a 

mode. The field is usually dominated by that single mo-

de in the frequency range of interest [2].

For a mobile communications system, the technique 

of printed antennas seems to have numerous advantages. 

Therefore, printed antennas have gained more and more 

importance in the field of antenna design. This led us to 

the decision to implement a microstrip antenna [3].

Most analyses of MSA characteristics assume a flat, 

perfectly conducting ground plane of infinity area. How-

ever, in practice, the ground plane may not be flat or 

perfectly conducting; it certainly does not have an in-

finite extent. The size and shape of a small ground pla-

ne can have significant effects on the electrical charac-

teristics of the antenna, such as radiation pattern.

 Among the various shapes of MSAs, the circular 

patches are the ones that have been more extensively 

studied. However, in some applications such as arrays, 

circular geometries offer certain advantages over other 

configurations. Recent experiment results have shown 

that circular disk microstrip elements may be easily mo-

dified to produce a range of impedances, radiation pat-

terns, and frequencies of operation [1].

The general formulation starts with the application of 

the concept of equivalence principle and the provision 

of IEs for field distribution on the surfaces of the con-

ductors and dielectric substrate. This introduces an un-

known electric surface current density on the conducting 

surfaces and unknown equivalent electric and magnetic 
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surface current densities on the dielectric surface. These 

currents, with the impressed current in the dielectric re-

gion, are the sources of the electric and magnetic fields 

in the presented regions. The formulation is exact and 

satisfies all boundary conditions. The boundary condi-

tions are applied on the various surfaces of the MSA.  

The IEs are solved numerically using the MoMs [4]. 

Numerical results for the surface magnetic and electric 

current densities are presented for both finite [5] and in-

finite ground planes [1].  The usefulness of the method 

for solving the problem of a CMSA is discussed.   

Ⅱ. Formulation of a CMSA Problem

The EM problem involving MSAs deals with the de-

termination of the field components in the presence of 

conductors and dielectrics. Thus, the boundary condi-

tions to be satisfied are of mixed type. This requires the 

vanishing of the tangential electric field components in 

the conductors and the continuity of the tangential elec-

tric and magnetic components in the dielectrics. An ex-

act analytical solution cannot be found to satisfy all boun-

dary conditions because practical geometries are finite in 

size. Therefore, a numerical solution must be utilized. 

For homogeneous dielectrics, a convenient formulation 

can be developed in terms of the tangential field compo-

nents on the boundary surfaces. The resulting IE inclu-

des all boundary conditions. Thus, the formulation of 

the problem is in terms of the surface integral equations, 

which are exact. Consequently, the accuracy of the sol-

ution depends on the nature of the numerical technique 

selected to solve them and used to determine the un-

known surface distributions.  

The CMSA can be considered a structure through which 

power is coupled to an exterior region (free space) via 

an aperture formed by the dielectric surface, as shown 

in Fig. 1, where a homogeneous dielectric material is 

sandwiched between two conducting layers. The sources 

of the EM excitation are provided by the impressed 

Fig. 1. Geometric of a circular microstrip antenna.

  

electric current 
id

J in the dielectric region.

In this analysis, two regions are defined to represent 

the CMSA radiation in free space. First, a finite region 

of space of volume V d is filled with a homogeneous 

material of permeability μd and permittivity εd with an 

impressed electric current source of density 
id

J . Second, 

an infinite region of volume V e is filled with a homoge-

nous material of permeability μe and permittivity εe. 

The subscripts and superscripts d and e refer to dielec-

tric and empty, respectively. 

The surfaces Sce and Scd are the boundaries to the 
conducting regions. Neither Sce nor Scd is a single sur-
face, but they are two separated surfaces below and 

above the dielectric. Sde is the dielectric surface on 
which the regions V d and V e are coupled. The EM field 

in V d is denoted by 
d

E , 
d

H and that in V e by 
e

E and 
e

H . In the present work, all these surfaces are assumed 

to be rotationally symmetric to represent bodies of revo-
lutions (BoRs). 

To obtain the solution for the electric and magnetic 

fields in both regions mentioned above, the equivalence 

principle is used to acquire the auxiliary problems sh-

own in Figs. 2 and 3. In this principle, the CMSA is 

divided into two equivalent regions V e and V d.

The boundary conditions to be satisfied are:- 

Fig. 2. Equivalent for region Ve.

  

 

Fig. 3. Equivalent for region Vd.
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0ˆ =´ eEn   , on Sce              (1a)

0ˆ =´ eEn   , on Scd            (1b)
ed EnEn ´=´ ˆˆ   , on Sde            (1c)  

ed HnHn ´=´ ˆˆ   , on Sde             (1d)

e
ce HnJ ´= ˆ     , on Sce             (2a)

d
cd HnJ ´= ˆ     , on Scd             (2b)

e
de HnJ ´= ˆ     , on Sde            (2c)

eEnM ´-= ˆ     , on Sde            (2d) 

and the surface equivalent currents are:-

The following set of equations, which is the mathe-

matical representation of the equivalence regions, is suf-

ficient to determine ceJ , cdJ , deJ , and M [6]:- 
 

0),(ˆ =+´ MJJEn dece
e

                    (3a)

0),(ˆ =+´ MJJHn dece
e

                   (3b)
 

0)0,(ˆ),(ˆ =´+---´ idd
decd

d JEnMJJEn    (3c)

0)0,(ˆ),(ˆ =´+---´ idd
decd

d JHnMJJHn   (3d) 
 

where ),( MJE a
 and  ),( MJH a

 are the electric and 

magnetic fields due to the equivalent electric and mag-

netic currents J  and M  radiating in the homogeneous 

medium characterized by μa and εa everywhere, re-  

spectively. The superscript (a) represents (e) or (d), 

whereas )0,( idd JE  and )0,( idd JH  are the excitation 

electric and magnetic fields, respectively, caused by the 

impressed electric current density
idJ .

One set of equations that can be identified from Eqs. 

(3) is given by:-

0),(tan =+ MJJE dece
e

      , on Sce          (4a)

)(),( tantan
idd

decd
d JEMJJE =+   , on Scd        (4b)

)(),(),( tantantan
idd

decd
d

dece
e JEMJJEMJJE =+++   

(4c)

)(),(),( tantantan
idd

decd
d

dece
e JHMJJHMJJH =+++

        

(4d)

The subscript (tan) denotes the tangential components 

of the fields on the surface in the equation. These boun-

dary conditions, Eq. (4), are sufficient to determine the 

fields 
ded HEE ,, , and eH .

Eqs. (4) represents the IEs for these currents. These 

IEs can be generated using appropriate vector potentials 

in terms of which the field vectors are given by Ref. [7]:-
 

)(
1

)()(),( MFJJAjMJE a

a

aaa ´Ñ-FÑ--=
e

w
  (5) 

)(
1

)()(),( JAMMFjMJH a

a

aaa ´Ñ+Ñ--=
m

yw
  (6) 

 

where )(JAa
 and )(MF a

 are the magnetic and electric 

vector potentials, respectively, given by- 
 

sdrrGrJJA
s

a
a

a ¢¢¢= ò
¢

),()()( m
              (7)

sdrrGrMMF
s

a
a

a ¢¢¢= ò
¢

),()()( e
               (8)

 

While, )(JaF  and )(May  are the electric and mag-

netic scalar potential, respectively, given by :-  
 

sdrrGJJ
s

a

a

a ¢¢=F ò
¢

),()(
1

)( s
e                  (9)

sdrrGMmM
s

a

a

a
¢¢= ò

¢

),()(
1

)(
m

y
                  (10) 

 

and, 
 

)()( rJ
j

J s
¢×Ñ¢=

w
s

                           (11)

)()( rM
j

Mm s
¢×Ñ¢=

w                            (12)
 

where, )(Js  is the electric surface charge, )(Mm  is the 

magnetic surface charge and w is the angular fre-

quency. The function ),( rrG a ¢  is the scalar Greensُ 

function and is given by :- 
 

( )
rr

e
rrG

rrjk

¢-
=¢

¢--

p4
,

                       (13) 
 

where mew=k  is the wave number and w  is the fi-

xed angular frequency of the problem.

2-1 Formulation of the Analysis

The coordinate system of the CMSA considered in 

this analysis as a simple representation of an axisym-

metric object is shown in Fig. (4). In this figure, the no-

tations without prime represent the field point, whereas 

the notations with prime represent the source point. We 

define the orthogonal surface tangents by their unit vec-

tors tû  and fû and the outward normal by the direction 

of its unit vector nû  given by-

tn uuu ˆˆˆ ´= f                            (14) 

, on Sde

on Sce and Sde

in Fig. 2

just outside

Scd and Sde

in Fig. 3
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Fig. 4. Geometry of the circular microstrip as a body of 
revolution. patch of radius (a) and thickness (at), gr-
ound plane of radius (g) and thickness (gt) and di-

electric material of thickness (h).

  

 

These unit vectors can be determined in cylindrical 

coordinates by :-

nnr cosˆsinˆˆ
zt uuu +=                         (15a)

ff uu ˆˆ =                                     (15b)

ffnr -¢¢=¢ )cos(sinˆˆ
t uu

   nffnf
¢+-¢¢+ cosˆ)sin(sinˆ

zuu             (15c)

)cos(ˆ)sin(ˆˆ ffff frf -¢+-¢-=¢ uuu              (15d)

where n is the angle between the tû  and the z-axis, 

which is positive if tû  points away from the z-axis and 

negative if tû  points toward it. Similarly,n ¢ is the angle 

between tu ¢ˆ  and the z-axis at ( )f¢¢,t . 

If the positional vectors of points ),( ft  and ),( f ¢¢t  

are r and r ¢, respectively, then we can obtain the rela-

tive positional vector R [see Fig. 4] to have the follow-

ing form:- 
 

( ) ( )
2

1

222

2
sin4 ú

û

ù
ê
ë

é
÷
ø

ö
ç
è

æ -¢
¢+¢-+¢-=

ff
rrrr zzR

      (16) 

2-2 Method of Solution

The surfaces of the CMSA can be generated by rota- 

ting a generating curve, which is a plane curve, about 

the z-axis. In the computation, the generating curve of 

the surfaces (Sce+Sde) and (Scd+Sde) is approximated by 

choosing a succession of points ti (i=1,2,… N) on the ge-

nerating curve and then connecting these points by st-

raight-line segments (N represents the total number of 

points). The point ti is called a data point; its location 

is specified by its distance ir  from the z-axis and its 

iz  coordinates. 

The number of data points on the patch, dielectric, 

and ground plane surfaces is Np, Nd, and Ng, respec-

tively. The first data point on dielectric surface Sde is the 

point where Sde meets the ground plane.  This data point 

is the (Ng+1) on the generating curve. The last data 

point on Sde is the point where Sde meets the conducting 

patch. 

2-2-1 Expansion of the Unknown Currents

According to the MoM procedures, which reduce Eqs. 

(5) and (6) to a set of linear equations in matrix form, 

the unknown surface currents on the different surfaces 

of the CMSA are expressed in a finite modal expansion 

[8]. On a BoR, the induced currents have components 

along two orthogonal surface vectors tû  and fû . The el-

ectric and magnetic current densities can now be decom-

posed into two components along the unit vector tu ¢ˆ  and 

f ¢û  and expressed in the following form [9], [10]:- 

( ) ( )( )å
¥

-¥=

¢¢+¢=¢
n

jn
n

t
n etJtJrJ ff)(

           (17a)

( ) ( )( )å
¥

-¥=

¢¢+¢=¢
n

jn
n

t
ne etMtMrM ffh)(

       (17b)

where eh  is the free space impedance. 

The electric current J  exists on both conducting and 

dielectric surfaces, where M exists only on the dielec-

tric. The variation f ¢  is known as a continuous sinus-

oidal distribution with f¢jne , and the t¢  variation is an 

unknown function that can be expanded as a linear com-

bination of N  terms as:-

( ) ( )tfIutJ i

N

i
nin

¢=¢ å
-

=

¢

6

1

ˆ a
a

a

                   (18a) 

( ) ( )tfKutM i

N

i
nin

d

¢=¢ å
-

=

¢

2

1

ˆ a
a

a

                 (18b) 

where a  is the t  or f -component.

The range of the integer n gives the total number of 

azimuthal modes. Here, 
t
nini

t
ni KII ,, f

, and 
f
niK  are the un-

known current coefficients to be found, and ( )tfi
¢  is the 

triangle function. Through a simple derivation, one can 
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yield the following:-

( ) ( )0,0,
)4(2

1

)2(2

1

2
tan

1
tan

1
ê
ë

é
+å å å

¥

-¥=

--

=

-

=n

NN

i

N

i

e
ni

e
ni

e
ni

ee
ni

d d

JEIJEI

    
( ) 0,0

)2(2

1
tan =ú

û

ù
+ å

-

=

N

i
ni

e
nie

d

MEKh

, on Sce                                      (19a) 
 

( ) ( )
n

NN

i

N

i

d
ni

d
ni

d
ni

dd
ni JEIJEI

d d)4(2

1

)2(2

1

2
tan

1
tan

1 0,0,ê
ë

é
+å å å

¥

-¥=

--

=

-

=

   
( ) ( )idd

N

i
ni

d
nie JEMEK

d

tan

)2(2

1
tan ,0 =ú

û

ù
+ å

-

=

h

, on Scd                                   (19b) 
 

( ) ( ){ }å å
¥

-¥=

--

=
ê
ë

é
+

n

NN

i

d
ni

dd
ni

e
ni

ee
ni

d

JEIJEI
)4(2

1

1
tan

11
tan

1 0,0,

  
} ( ) ( ){ }å

-

=

++
N

i

d
ni

d
ni

e
ni

e
ni

d

JEIJEI
)2(2

1

2
tan

2
tan 0,0,

   

 
}+ ( ) ( ){ } ( )idd

N

i
ni

d
nini

e
nie JEMEKMEK

d

tan

)2(2

1
tantan ,0,0 =ú

û

ù
+å

-

=

h
       

    , on Sde                                 (19c) 
 

( ) ( ){ }å å
¥

-¥=

--

=
ê
ë

é
+

n

NN

i

d
ni

dd
ni

e
ni

ee
ni

d

JHIJHI
)4(2

1

1
tan

11
tan

1 0,0,

  
} ( ) ( ){ }å

-

=

+++
N

i

d
ni

d
ni

e
ni

e
ni

d

JHIJHI
)2(2

1

2
tan

2
tan 0,0,

             

  
}+ ( ) ( ){ } ( )idd

N

i
ni

d
nini

e
nie JHMHKMHK

d

tan

)2(2

1
tantan ,0,0 =ú

û

ù
+å

-

=

h
    

    , on Sde                                 (19d) 

2-3 Weighting Functions

The choice of weighting functions W is important in 

that the elements of this functions must be linearly in-

dependent to make the resulting equations linearly inde-

pendent. Furthermore, choosing weighting functions that 

minimize the computations required to evaluate the inner 

products is generally advantageous. As such, similar 

types of functions are often used for both weighting and 

expansion functions (i.e., W=J*, where * denotes a com-

plex conjugate); this is known as the Galerkin method 

[4]. The testing functions are defined by-

( ) ( ) ( ) ( ) ( )[ ]å å
¥

-¥=

-

=

+=+=
m

N

i
mi

t
mi

t tWtWtWtWrW
6

1

,,,, ffff ff

  

     (20a)

( ) ( ) f
a

a f jm
imi etfutW -= ˆ,                       (20b)

The expansion and testing functions ( [ ]nini MJ ,  and 

[ ]miW  ), as defined by Eqs. (17), (20b), and (20c), are 

orthogonal over the period 0 to 2π in f , for ( )mn ¹ . 

This indicates that the inner products of these functions 

disappear for ( )mn ¹ . This fact allows each mode to be 

treated completely independent of the other modes. 

Accordingly, we obtain a separate matrix equation for 

each mode.

The inner product of the electric and magnetic field 

equations, given by Eqs. (19), is taken at each side by 

a set of testing function. To select the appropriate values 

for the elements of the testing functions in the inner 

product of Eqs. (19), it is possible to note down the fol-

lowing:-

      

2-3-1 For j=1, 2, 3, ……., 2(N—Nd—4)

( ) ( )0,,0,, 2
tan

1
)4(2

1

)2(2

1

1
tan

11 +å å
--

=

-

=

e
ni

ee
nj

NN

i

N

i
ni

e
ni

ee
nj

e
ni JEWIJEWI

d d

  

     
( ) 0,0, tan

1
)2(2

1

=+ å
-

=
ni

ee
nj

N

i
nie MEWK

d

h
               

     , on Sce                                (21a)

( ) ( )d
ni

dd
ni

NN

i

N

i
nj

d
ni

dd
nj

d
ni JEWIJEWI

d d

0,,0,, 2
tan

1
)4(2

1

)2(2

1

1
tan

11å å
--

=

-

=

+

 
( )ni

dd
nj

N

i
nie MEWK

d

,0, tan
1

)2(2

1

å
-

=

+h
   ( )iddd

nj JEW tan
1 ,=   

   , on Scd                                   (21b)

2-3-2 For j=1, 2, 3, ……., 2(Nd—2)

( ) ( )[ ]å
--

=

++
)4(2

1

1
tan

211
tan

21 0,,0,,
dNN

i

d
ni

dd
nj

d
ni

e
ni

ee
nj

e
ni JEWIJEWI

  
( )[å

-

=

+
)2(2

1

2
tan

2 0,,
dN

i

e
ni

ee
njni JEWI

 
+ ( ) ] ( )[ ni

ee
nj

N

i
nie

d
ni

dd
nj MEWKJEW

d

tan
2

)2(2

1

2
tan

2 ,0,0,, + å
-

=

h

  
( ) ] ( )iddd

njni
dd

nj JEWMEW tan
2

tan
2 ,,0, =+

 , on Sde                                     (21c) 
  

( ) ( )[ ]å
--

=

++
)4(2

1

1
tan

311
tan

31 0,,0,,
dNN

i

d
ni

d
nj

d
ni

e
ni

e
nj

e
ni JHWIJHWI

  

  
] ( )[å

-

=

+
)2(2

1

2
tan

3 0,,
dN

i

e
ni

e
njni JHWI

  
+ ( ) ] ( )[ ni

e
nj

N

i
nie

d
ni

d
nj MHWKJHW

d

tan
3

)2(2

1

2
tan

3 ,0,0,, + å
-

=

h

  
( ) ] ( )idd

njni
d

nj JHWMHW tan
3

tan
3 ,,0, =+

  , on Sde                               (21d)
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Eqs.(21) can be rearranged in submatrix form as fol-

low:- 

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê

ë

é

=

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê

ë

é

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê

ë

é

++

++

n

d
de

n

d
de

n

d
cd

n

n

n

n
d

n
e

n

d
dede

e
dedeen

d
dede

e
deden

d
cdden

e
cede

n

d
dede

e
dedeen

d
dede

e
deden

d
cdden

e
cede

n

d
decden

d
decdn

d
cdcdn

n

e
deceen

e
decenn

e
cece

I

V

V

K

I

I

I

ZZYYYY

YYZZZZ

YZZ

YZZ 0

0

0

1

1

3
,

3
,

2
,

2
,

1
,

1
,

3
,

3
,

2
,

2
,

1
,

1
,

3
,

2
,

1
,

3
,

2
,

1
,

h

h

h

h

  

(22)
                                     

The superscripts 1, 2, and 3 on the impedance Z and 

the admittance Y submatrices represent the calculation of 

Z and Y due to J  on the conductor, J  on the dielec-

tric, and M  on the dielectric surfaces, respectively. The 

submatrices Z and Y with superscripts (e) and (d) denote 

the impedance and admittance matrices for the exterior 

or interior media, respectively. The first and second 

pairs of suffixes identify the field and source surfaces, 

respectively. The index n implies the azimuthal mode 

number, and 
d

de
d

cd VV , , and 
d
deI  are the excitation sub-

matrices caused by the electric and magnetic field sour-

ces on the surfaces Scd and Sde from the interior region. 

I1e and I1d are the unknown coefficients of the electric 

current density on the Sce and Scd surfaces, respectively. 

I and K are the unknown coefficients of the equivalent 

electric and magnetic current densities on the Sde sur-

face.

Each submatrix of Z or Y in Eq. (22) consists of four 

submatrices. This equation can be written as follows: 

[ ] [ ] [ ]nnn VIT =   , ,.....2,1,0 ±±=n               (23) 

where nT  is a square matrix representing the impedance 

and admittance submatrices, nI  is a column matrix for 

the unknown expansion coefficients of J  and M , and 

nV  is the excitation column matrix. Each mode has the 

matrix equations of the form in Eq. (22).

2-4 Evaluation of the Matrix Element[ ]nT :

All elements of the T-matrix are given as the inner 

product of the weighting function with electric or mag-

netic fields caused by the electric and magnetic current 

densities.
      

2-4-1 Evaluation of Z-Submatrices Elements

In Eqs. (21), the mutual impedance between the source 

element (i) and the observation element (j) is taken 

from:-

(1) The electric field produced from the electric curr-

ent density J :-  

 

( ) ( )0,, baab
ni

a
mj

JE

jimn JEWZ =     
 

where the electric field ( )0,b

ni

a JE  can be expressed in 

terms of the magnetic vector and electric scalar poten-

tials as follows :-
 

( ) ( ) ( )( )bbaab fw ni
a

ni
a

mj

JE

jimn JJAjWZ Ñ--= ,     (24) 

 

(2) The magnetic field produced from the magnetic 

current density M :-
 

( ) ( )baab
ni

a
mj

MH

jimn MHWZ ,0,=    
 

where the magnetic field ( )b
ni

a MH ,0  can be expressed 

in terms of the electric vector and magnetic scalar po-

tentials as follows:- 
 

( ) ( ) ( )( )bbaab yw ni
a

ni
a

mj

MH

jimn MMFjWZ Ñ--= ,   (25) 
 

where α and β are either the t- or f -direction. The su-

perscript JE denotes the impedance matrix found in the 

electric field and the electric current density, whereas 

the superscript MH refers to the impedance matrix fo-

und in the magnetic field and the magnetic current 

density. The relationship between these impedance ma-

trices is proven in this paper as follows:- 
 

( ) ( )JE

jin

a

MH

jin ZZ abab

h 2

1
=

                      (26)
 

where aaa emh /=

The inner product of the electric field with the weigh-

ting function 
a

mjW , [Eq. (20b)] provides the elements of 

the impedance matrix as follows:- 
 

( ) {åå
= =

ê
ë

é
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4

1

4

1
2sinsin

p q
qpqpaa

JE

ji

tt
n GTTjKZ nnh

        
} ú

û

ù
¢¢-+

2
1

1coscos qp

a

qp TT
K
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Gnn
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( ) åå
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û
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ê
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4

1

4

1
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p q
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GTTKZ
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nhf

  

(27c)
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( ) åå
= = ú

ú

û

ù

ê
ê

ë

é
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ø
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çç
è
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4

1

4

1

1
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2
p q qpa
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G
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n
GTTjKZ

rr
hff

(27d)

 

where G1, G2 and G3 are defined as:- 
 

( ) ff
p

¢¢= ò
-

dn
R

e
G

RjK a

0

1 cos
            (28a)

( ) fff
p

¢¢¢= ò
-

dn
R

e
G

RjK a

coscos
0

2
     (28b)

( ) fff
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¢¢¢= ò
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R

e
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0
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÷
ø
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è

æ ¢
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ø

ö
çç
è

æ
=

2
sin4

4
22

2

f
r

r
p

pR
               (28d)

The Gaussion quadrature technique is used to calcu-

late these integrals. Eq. (28) represents the approxima-

tion for R at t=t'. 

2-4-2 Evaluation of the Y-Submatrices Elements

In Eqs. (21), the mutual admittance between the so-

urce element (i) and the observation element (j) is taken 

from:- 

(1) The magnetic field produced from the electric curr-

ent density J :-
 

( ) ( )0,, baab
ni

a
mj

JH

jimn JHWY =           
 

The magnetic field can be expressed in terms of the 

magnetic vector potential, which yields the following:-
  

( ) ( )÷÷
ø

ö
çç
è

æ
´Ñ= baab

m
ni

a

a

mj

JH

jimn JAWY
1

,
    (29)

  

 (2) The electric field produced from the magnetic 

current density M :-
 

( ) ( )baab
ni

a
mj

ME

jimn MEWY ,0,=            
 

The electric field can be expressed in terms of the 

electric vector potential. Thus, we have:- 
 

( ) ( )÷÷
ø

ö
çç
è

æ
´Ñ-= baab

e
ni

a

a

mj

ME

jimn MFWY
1

,
        (30)

 

where the superscript JH denotes the admittance matrix 

found in the magnetic field and the electric current den-

sity, whereas the superscripts ME refer to the admittance 

matrix found in the electric field and the magnetic cu- 

rrent density. The relationship between these admittance 

matrices is proven as follows:-
   

( ) ( )JH

jin

ME

jin YY abab -=                      (31)
 

The dot product of the magnetic field with the wei-

ghting function 
a

mjW  gives the elements of the admit-

tance matrix as follows:-
 

( ) [
p q

pqqqp
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4
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4
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= =
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where, 
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ff

p
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+
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0

34

1
cos
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( ) ( )
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36

1
sinsin

     (33c)
 

Again, the Gaussion quadrature techniques are used to 

evaluate the integrals of Eqs. (33).

 Here, pr  , qr  , pn , and  qn   are the r   and n  eval-

uated at tp and tq, respectively, where tp and tq  are giv-

en by:- 
 

2

5.2-
+=

p
jtp ,  2

5.2-
+=

p
itq                  (34)

2-4-3 Evaluation of the Excitation Submatrices Ele-

ments

The excitation fields ( )idd JEtan  and ( )idd JH tan  are de-

fined as the fields of finite sources within the dielectric 

region; they radiate in an unbounded region. The ele-

ments of the excitation matrix are the fields caused by 

the current elements located in the dielectric substrate, 
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which are ( )
nj

d
cdV , ( )

nj

d
deV , and ( )

nj

d
deI , calculated at the ge-

nerating surface of the MSA (i.e., Scd+Sde). The elements 

of the excitation matrix are defined as the inner products 

of ( )idd JEtan  or ( )idd JH tan  with testing functions ( )rW nj . 

These elements are shown in Eqs. (21) as follows:-
 

( ) ( )ò ×=
s

idinc
njj

d
n dsJEWV tan aa

                  (35a)

( ) ( )ò ×=
s

idinc
njj

d
n dsJHWI tan aa

                   (35b)
 

where a  is the t  or f -component.

The electric and magnetic radiation fields caused by 
an electric current element are given by:- 

 

( ) ( ) ( )iddiddidinc IIAjIE FÑ--= w                (36a)

( ) ( )idd

d

idinc IAIH ´Ñ=
m

1

                    (36b) 
 

where ( )idd IA  is the magnetic vector potential, and 

( )idd IF  is the electric scalar potential given by :- 
 

( ) ( )( )rrKhI
jK

IA d
idddidd ¢--= 2

0
4

l
p

m
          (37a)

( ) ( )( )rrKhII d
iddidd ¢-Ñ×=F 2

0
4

l
p

h
             (37b)

 

where lidI  is the dipole moment in the zû - direction, 

and  
( )( )rrKh d

¢-2
0  is the spherical Hankel function of 

the second kind zero order. 
The solution of Eqs. (35) provides the following ele-

ments of the excitation matrix:-   
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where,
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( )[ ] 2
1

222 cos2 ffrrrr --++= ffpfppf zR               (40b)

where fr  and ff  are the coordinates of the feed point. 

The parameters ρp, zp, and pn  are the coordinates of the 

field point on the surfaces Scd or Sde. They are assumed 

to be constant in each pulse and equal to their values 

at the midpoint of the pulse. Tp and T'p are the weight-

ing factors of the impulse functions approximating the 

triangular functions and their derivatives. 

2-5 Evaluation of the Radiation Fields

The radiation fields of the CMSA are calculated from 

a knowledge of the equivalent electric and magnetic sur-

face current densities flowing over the outer surfaces of 

the ground plane, dielectric and patch.  Once, these sur-

face current densities J  and M  are determined, then 

the far-field components qE  and fE  can be obtained 

from :-  
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Where, 
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 )(
cos

tTeejC q

zjKjnn oqeo ¢=
qfp               (42e)    

 oqeKu qr sin=                              (42f)

and ( )uJ n , ( )uJ n 1-  and ( )uJ n 1+  are the Bessel functions 

of the first kind and order (n), (n—1), and (n+1), respec-
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Fig. 5. Relationship between source and field points.

  

 

tively. 

  Where  ,, oor q  and of  are the units vectors of the co-

ordinates shown in Fig. 5, and the integrals are carried 

out over the total outer surface of the body.

Ⅲ. Results and Discussion 

The surface currents are determined and plotted for 

both the dominant TM11- and TM21- modes. Fig. (6) 

shows the computed electric and magnetic surface cur-

rents for the TM11-mode at the outer boundary of the 

microstrip surface. The horizontal axis shows the length 

of the contour (L) along the generating curve. Due to 

the structure symmetry, only half of the geometry is 

considered. In this figure, the external surface currents 

of the three regions are plotted with respect to their lo-

cations on the surface, where these regions correspond 

to the ground plane, the dielectric substrate, and the 

patch surface, respectively. An examination of this fig-

ure reveals that the electric current is the strongest on 

the patch surface and has a negligible value on the 

ground plane. The t-component of the electric current 

value is small on the dielectric, whereas the f -compo-

nent of this current is considerably stronger than the 

t-component and is maximum near the patch edge. The 

magnetic current fM  is considerably stronger than tM ; 

it is maximum near the patch edge and negligible in 

terms of the dielectric thickness. Therefore, the con-

tributions to the antenna radiation mainly come from the 
f -components of the electric and magnetic currents on 

the dielectric surface near the patch edge and the elec-

tric current on the upper patch surface.

Fig. (7) shows that the t-component of the electric 

surface current for the TM21-mode has a small value on 

the outside boundary except near the center of the patch, 

whereas the f -component of this current has the high-

(a)

(b)

Fig. 6. Electric and magnetic surfaces current densities for
the TM11-mode on the outside boundary of a CM-

SA (g=0.4l , h=0.02l , fr=3.214 GHz, re =2.32, gt

=0.01 l , at=0.00775l , lr 05.0=f ,
o25=ff ).

  

(a)

(b)

Fig. 7. Electric and magnetic surfaces current densities for
the TM21-mode on the outside boundary of a CM-

SA (g=0.5l , h=0.02l , fr=3.214 GHz, re =2.32, gt 

=0.01l , at=0.00775l , lr 23.0=f ,
o0=ff ).
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 (a) (g=0.31l , h=0.00397l , re =794 MHz, re =2.32, 

gt=0.01l , at=0.0077l , lr 05.0=f , 
o0=ff )

 

 (b) (g=0.435l , h=0.00662l , fr=1,324 MHz, re =2.32, 

gt=0.01l , at=0.01l , lr 22.0=f , 
o0=ff )

Fig. 8. Radiation patterns of a CMSA excited by, (a) TM11- 
mode (b) TM21-mode.

  

 

est value on these boundaries. The magnetic current com-

ponents ( )fMM t ,  and the main radiation zones are the 

same as those in the TM11-mode case. 

In any program, to develop techniques for solving ra-

diating problems, it is necessary to verify the techniques 

and examine the accuracy of the results by comparing 

it with well-known results. 

For the purpose of validity and convergence, Fig. 8 

shows the radiation patterns in the principle plane for a 

CMSA compared with the  experimental results of Lo 

Y. T. [11].

It can be seen from this figure that the theoretical re-

sults agrees well with the measured results. 

Ⅳ. Conclusions

The analytical treatment of this work enables us to in-

clude the effects of the adjacent modes on the dominant 

mode in calculating the surface current of the CMSA. 

The computed electric current density J  at the outside 

boundary of the antennas under study is the strongest on 

the patch surface and has a negligible value on the 

ground plane and dielectric surfaces. Note also that the 

radial component tJ  of this density increases rapidly as 

it approaches the center of the patch, whereas the an-

gular component fJ  of this current is considerably larger 

than tJ  and is maximum near the patch edge. The mag-

netic component fM  is considerably stronger than tM  

and is maximum near the patch edge; these components 

are negligible in terms of the dielectric thickness. 
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