DOI QR코드

DOI QR Code

Inhibition of Adipocyte Differentiation by Methanol Extracts of Oenanthe javanica Seed in 3T3-L1 Preadipocytes

돌미나리씨 추출물에 의한 3T3-L1 지방전구세포의 분화 억제

  • Ji, Hyang Hwa (Department of Life Science and Biotechnology, College of Natural Science, Dong-Eui University) ;
  • Jeong, Hyun Young (Department of Life Science and Biotechnology, College of Natural Science, Dong-Eui University) ;
  • Jin, Soojung (Blue-Bio Industry RIC, Dong-Eui University) ;
  • Kwon, Hyun Ju (Department of Life Science and Biotechnology, College of Natural Science, Dong-Eui University) ;
  • Kim, Byung Woo (Department of Life Science and Biotechnology, College of Natural Science, Dong-Eui University)
  • 지향화 (동의대학교 생명응용학과) ;
  • 정현영 (동의대학교 생명응용학과) ;
  • 진수정 (동의대학교 블루바이오 소재 개발 센터) ;
  • 권현주 (동의대학교 생명응용학과) ;
  • 김병우 (동의대학교 생명응용학과)
  • Received : 2012.11.12
  • Accepted : 2012.12.03
  • Published : 2012.12.30

Abstract

Oenanthe javanica has been used as a food source and also in traditional folk medicine for its detoxifying properties and anti-microbial effects since ancient times. In this study, we evaluated the effect and mechanism of O. javanica seed methanol extract (OJSE) on adipocyte differentiation by 3T3-L1 preadipocytes. Under non-toxic conditions, OJSE treatment resulted in a dose-dependent inhibition of lipid droplet generation and triglyceride accumulation by suppressing adipocyte differentiation, which are associated with the decreased expression of key proadipogenic transcription factors including CCAAR/enhancer binding protein ${\alpha}$, ${\beta}$ ($C/EBP{\alpha}$, $C/EBP{\beta}$) and peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$). OJSE also significantly inhibited proliferation and differentiation of 3T3-L1 preadipocytes through G1-phase arrest, indicating that OJSE blocked mitotic clonal expansion during adipocyte differentiation. Investigation of the alteration of G1 phase arrest-related proteins indicated a dose-dependent increase in the expression of p21 and reduction in expression of cyclin E, Cdk2, E2F-1 and phospho-Rb by OSJE. Taken together, these results suggest that OJSE inhibits adipocyte differentiation by blocking the mitotic clonal expansion, which is accompanied by preadipocyte cell cycle arrest.

돌미나리(Oenanthe javanica)는 뛰어난 해독작용과 항균작용으로 예로부터 약재로 사용되어 왔으나 돌미나리씨의 활성은 아직 밝혀지지 않았다. 본 연구에서는 3T3-L1 지방전구세포를 사용하여 돌미나리씨 메탄올 추출물(OJSE)의 지방세포분화에 미치는 영향과 그 기전에 대해 조사하였다. 세포독성이 없는 농도($1{\sim}200{\mu}g/ml$)의 OJSE를 지방세포 분화유도제와 동시에 지방전구세포에 처리하여 분화시킨 후 Oil Red O 염색을 한 결과 세포내 lipid droplet 생성 및 triglyceride 축적이 OJSE 농도의존적으로 감소되었으며, 지방세포분화과정에 중요한 역할을 하는 지방세포특이적 마커인 CCAAT/enhancer binding proteins ${\alpha}$, ${\beta}$ ($C/EBP{\alpha}$, $C/EBP{\beta}$) 및 peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$)의 발현이 현저하게 저하되었다. 이는 OJSE에 의해 지방세포 분화 관련 전사인자의 발현이 효과적으로 억제되어 지방세포로의 분화가 저해되고 결과적으로 지방세포내 lipid droplet 생성 및 triglyceride 축적이 억제되었다는 것을 시사한다. 또한 OJSE처리에 의해 mitotic clonal expanstion 단계에서의 세포증식이 저해되었으며, 세포주기의 변화를 분석한 결과, OJSE처리에 의해 지방전구세포의 G1 arrest가 유발됨을 확인하였다. 세포주기 관련 단백질 발현을 분석한 결과, OJSE 농도의존적으로 Cdk inhibitor인 p21의 발현이 현저하게 증가되었으며, 반면 cyclin E, Cdk2, E2F-1 및 phospho-Rb의 발현은 저하됨을 알 수 있었다. 이러한 연구 결과들에 의해 OJSE는 지방전구세포의 G1 arrest를 유도하고 지방세포분화 관련 단백질의 발현을 억제하여 지방세포로의 분화를 억제하는 항비만 효능을 갖는 천연 소재임을 확인하였고, 본 연구는 이를 활용한 향후 지속적인 연구를 위한 기초자료로 그 가치가 매우 높을 것으로 생각된다.

Keywords

References

  1. Brun, R. P., Kim, J. B., Hu, E., Altiok, S. and Spiegelman, B. M. 1996. Adipocyte differentiation: a transcriptional regulatory. Curr. Opin. Cell. Biol. 8, 826-832. https://doi.org/10.1016/S0955-0674(96)80084-6
  2. Burns, A. A., Livingstone, M. B., Welch, R. W., Dunne, A. and Rowland, I. R. 2002. Dose-response effects of a novel fat eulsion (Olibra) on energy and macronutrient intakes up to 36 h post-consumption. Eur. J. Clin. Nutr. 56, 368-377. https://doi.org/10.1038/sj.ejcn.1601326
  3. El-Jack, A. K., Hamm, J. K., Pilch, P. F. and Farmer, S. R. 1999. Reconstitution of insulin-sensitive glucose transport in fibroblasts requires expression of both PPAR gamma and C/EBP alpha. J. Biol. Chem. 274, 7946-7951. https://doi.org/10.1074/jbc.274.12.7946
  4. Fajas, L., Fruchart, J. C. and Auerx, J. 1998. Transcriptional control of adipogenesis. Curr. Opin. Cell. Biol. 10, 165-173. https://doi.org/10.1016/S0955-0674(98)80138-5
  5. Flegal, K. M., Carrol, M. D., Ogden, C. L. and Johnson, C. L. 2002. Prevalence and treds in obesity among US adults. JAMA 288, 1723-1727. https://doi.org/10.1001/jama.288.14.1723
  6. Fox, K. E., Fankell, D. M., Erickson, P. F., Majka, S. M., Crossno, J. T. Jr. and Klemm, D. J. 2006. Depletion of cAMP-response element-binding protein/ATF1 inhibits adipogenic conversion of 3T3-L1 cells ectopically expressing CCAAT.enhancer-binding protein (C/EBP) alpha, C.EBP beta, or PPAR gamma 2. J. Biol. Chem. 281, 40341-40353. https://doi.org/10.1074/jbc.M605077200
  7. Gregoire, F. M. and Smas, C. M. 1998. Understanding adipocyte differentiation. Physiol. Rev. 78, 783-809.
  8. Hamm, J. K., Park, B. H. and Farmer, S. R. 2001. A role of C/EBP beta in regulating peroxisome proliferator-activated receptor gamma activity during adipogenesis in 3T3-L1 preadipocyte. J. Biol. Chem. 276, 18464-18471. https://doi.org/10.1074/jbc.M100797200
  9. Harbour, J. W., Luo, R. X., Santi, A. D., Postige, A. A. and Dean, D. C. 1999. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb fuctions as cells move through G1. Cell 98, 859-869. https://doi.org/10.1016/S0092-8674(00)81519-6
  10. Hwang, H. S., Kim, S. H., Yoo, Y. G., Chu, Y. S., Shon, Y. H., Nam, K. S. and Yun, J. W. 2008. Inhibitory effect of deep-sea water on differentiation of 3T3-L1 adipocytes. Mar. Biotechnol. 11, 161-168.
  11. Kereiakes, D. J. and Willerson, J. T. 2003. Metabolic syndrome epidemic. Circulation 108, 1552-1553. https://doi.org/10.1161/01.CIR.0000093203.00632.2B
  12. Kim, C. Y., Le, T. T., Chen, C., Cheng, J. X. and Kim, K. H. 2011. Curcumin inhibits adipocyte differentiation through modulation of mitotic clonal expansion. J. Nutr. Biochem. 22, 910-920. https://doi.org/10.1016/j.jnutbio.2010.08.003
  13. Kim, M. H. 2004. Updates in treating obesity. Kor. J. Health Psychol. 9, 493-959.
  14. Kim, S. H., Park, H. S., Lee, M. S., Cho, Y. J., Kim, Y. S., Hwang, J. T., Sung, M. J., Kim, M. S. and Kwon, D. Y. 2008. Vitisin A inhibits adipocyte differentiation through cell cycle arrest in 3T3-L1 cells. Biochem. Biophys. Res. Commun. 372, 108-113. https://doi.org/10.1016/j.bbrc.2008.04.188
  15. Lee, H. Y., Yoo, M. J. and Chung, H. J. 2001. Antibacterial activities in watercress (Oenanthe javanica D.C) cultivated with different culture methods. Kor. J. Food. Culture 16, 243-249.
  16. Lee, K. I., Rhee, S. H. and Park, K. Y. 2004. Antimutagenic and Antioxidative Effect of Water Dropwort and Small Water Dropwort. Kor. J. Community Living Sci. 15, 49-55.
  17. Mekdad, A. H., Ford, E. S., Bowman, B. A., Dietz, W. H., Vinicor, F., Bales, V. S. and Marks, J. S. 2003. Prevalence of obesity, diabetes and obesity related health risk factors. JAMA 289, 76-79. https://doi.org/10.1001/jama.289.1.76
  18. Naderali, E. K. 2009. Obesity and cardiovascular dysfunction : A role for resveratol? Obes. Res. Clin. Pract. 3, 45-52. https://doi.org/10.1016/j.orcp.2008.10.005
  19. Naghshineh, S., Noguchi, M., Huang, K. P. and Londos, C. 1986. Activation of adipocyte adenylate cyclase by protein kinase C. J. Biol. Chem. 261, 14534-14538.
  20. Ordovas, J. M. and Mooser, V. 2004. Nutrigenomic and nutrigenetics. Curr. Opin. Lipidol. 15, 101-108. https://doi.org/10.1097/00041433-200404000-00002
  21. Otto, T. C. and Lane, M. D. 2005. Adipose development : from stem cell to adipocyte. Crit. Rev. Biochem. Mol. Biol. 40, 229-242. https://doi.org/10.1080/10409230591008189
  22. Saitoa, T., Abea, D. and Sekiya, K. 2009. Flavanone exhibits PPARγ ligand activity and enhances differentiation of 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 380, 281-285. https://doi.org/10.1016/j.bbrc.2009.01.058
  23. Sherr, C. J. and Roberts, J. M. 1995. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 9, 1149-1163. https://doi.org/10.1101/gad.9.10.1149
  24. Shimomura, T., Funahashi, T., Takhashi, M., Meada, K., Kotani, K., Nakamura, T. and Yamashita, Y. 1996. Enhanced expression of PAI-1 in visceral fat : possible contributor to disease in obesity. Nat. Med. 2, 800-803. https://doi.org/10.1038/nm0796-800
  25. Suryawan, A. and Hu, C. Y. 1993. Effect of serum on differentiation of porcine adipose stromal-vascular cells in primary culture. Comp. Biochem. Physiol. Comp. Physiol. 105, 485-492. https://doi.org/10.1016/0300-9629(93)90424-3
  26. Tang, Q. Q. and Lane, M. D. 1999. Activation and centromeric localization of CCAAT/enhancer-binding proteins during the mitotic clonal expansion of adipocyte differentiation. Genes Dev. 13, 2231-2241. https://doi.org/10.1101/gad.13.17.2231
  27. Tang Q. Q., Otto, T. C. and Lane, M. D. 2003. Mitotic clonal expansion : A synchronous process required for adipogenesis. Proc. Natl. Acad. Sci. USA 100, 44-49. https://doi.org/10.1073/pnas.0137044100
  28. Tontonoz, P., Hu, E. and Spiegelman, B. M. 1995. Regulation of adipocyte of adipocyte gene expression and differentiation by peroxisome proliferator activated receptor gamma. Curr. Opin. Genet. Dev. 5, 571-576. https://doi.org/10.1016/0959-437X(95)80025-5
  29. Zhang, H. S., Gavin, M., Dahiya, A., Postigo, A. A., Ma, D., Luo, R. X., Harbour, W. J. and Dean, D. C. 2000. Exit form G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSEI/SNF and Rb-hSWI/SNF. Cell 101, 79-89. https://doi.org/10.1016/S0092-8674(00)80625-X
  30. Zhang, J. W., Tang, Q. Q., Vinson, C. and Lane, M. D. 2004. Dominant-negative C/EBP disrupts mitotic clonal expansion and differentiation of 3T3-L1 preadipocytes. Proc. Natl. Acad. Sci. USA 101, 43-47. https://doi.org/10.1073/pnas.0307229101

Cited by

  1. Potential of Fisetin as a Nutri-cosmetics Material through Evaluating Anti-oxidant and Anti-adipogenic Activities vol.14, pp.1, 2016, https://doi.org/10.20402/ajbc.2016.0003
  2. Protective Effect of Angelica keiskei Juice and Oenanthe javanica DC Juice on Oxidative Stress vol.47, pp.4, 2015, https://doi.org/10.9721/KJFST.2015.47.4.517
  3. Anti-obesity Effects of Curcuma longa L. Extracts through Inhibiting Adipogenic Transcription Factors vol.15, pp.2, 2017, https://doi.org/10.20402/ajbc.2016.0127
  4. Antioxidant and Antiobesity Activities of Various Color Resources Extracted from Natural Plants vol.44, pp.2, 2015, https://doi.org/10.3746/jkfn.2015.44.2.165
  5. Anti-adipogenic Effect of Fermented Coffee with Monascus ruber Mycelium by Solid-State Culture of Green Coffee Beans vol.43, pp.4, 2014, https://doi.org/10.3746/jkfn.2014.43.4.624