DOI QR코드

DOI QR Code

Study on Sliding Wear Characteristics and Processing of MoSi

  • Park, Sungho (Department of Shipbuilding Design, Changwon College) ;
  • Park, Wonjo (Department of Energy and Mechanical Engineering, Gyeongsang National University) ;
  • Huh, Sunchul (Department of Energy and Mechanical Engineering, Gyeongsang National University)
  • 투고 : 2012.09.24
  • 심사 : 2012.11.19
  • 발행 : 2012.11.30

초록

In this study, a monolithic MoSi2 matrix reinforced with 20 vol% SiC particles, a SiC/MoSi2 composite matrix reinforced with 20 vol% ZrO2 particles, and a ZrO2/MoSi2 composite were fabricated using hot press sintering at $1350^{\circ}C$ for 1 h under a pressure of 30 MPa. The Vickers hardness and sliding wear resistance of the monolithic MoSi2, ZrO2/MoSi2, and SiC/MoSi2 composite were investigated at room temperature. A wear behavior test was carried out using a disk-type wear tester with a silicon nitride ball. The ZrO2/MoSi2 composite showed an average Vickers hardness value and excellent wear resistance compared with the monolithic MoSi2 and SiC/MoSi2 composite at room temperature.

키워드

참고문헌

  1. A. K. Ghosh, A. Basu and H. Kung, Intermetallic Matrix Composites II, MRS, Pittsburg, pp. 259-266
  2. A. K. Vasudevan and J. J. Petrovic, Materials Science and Engineering, A261, 1-5 (1992)
  3. R. Bhatti, A. J. Pritchard and B. Mortimer, The American Ceramic Society, High- Temperature Ceramic-Matrix Composites II, 181-186 (1995)
  4. C. He, Y. S. Wang, J. S. Wallace and S. M. Hsu, wear 162-164, 314-321 (1993) https://doi.org/10.1016/0043-1648(93)90514-M
  5. C. P. Dogan and J. A. Hawk, wear 212, 110-118 (1997) https://doi.org/10.1016/S0043-1648(97)00114-2
  6. D. Wang, J. Li and Z. Mao, wear 165, 159-167 (1993) https://doi.org/10.1016/0043-1648(93)90331-F
  7. F. D. Gac and J. J. Petrovic, J. Am. Ceram. Soc. 68 (8), C200-C201 (1985)
  8. Hwan Cheol Kim, Choong Do Park, Jeong Wung Jeong and In Jin Shon, METALS AND MATERIALS International, Vol. 9, No. 2, 173-178 (2003) https://doi.org/10.1007/BF03027274
  9. J. A. Kawk and D. E. Alman, Scripta Metallugica et Materialia, 32 [5] 725-730 (1995) https://doi.org/10.1016/0956-716X(95)91593-E
  10. J. J. Petrovic, A. K. Bhattacharya, R. E. Honnell, T. E. Mitchel, R. K. Wade and K. J. McClellan, Sci. and Eng. A 155, 259-266 (1992) https://doi.org/10.1016/0921-5093(92)90332-U
  11. J. J. Petrovic, Intermetallics, 8, 1175-1182 (2000) https://doi.org/10.1016/S0966-9795(00)00044-3
  12. J. J. Petrovic, R. E. Honnel, T. E. Mitchell, R. K. Wade and K. J. McClellan, Ceram. Eng. Sci. porc.12, 1633-1642 (1991) https://doi.org/10.1002/9780470313848.ch2
  13. Lan Sun and Jinsheng Pan, Materials Letters 53, 63-67 (2002) https://doi.org/10.1016/S0167-577X(01)00454-2
  14. M. Yamaguchi, H. Inui and K. Ito, Acta Mater., 48, 307-322 (2000) https://doi.org/10.1016/S1359-6454(99)00301-8
  15. P. S. Tantri, E. M. Jayasingh, S. K. Biswas and S. K. Ramasesha, Materials Science & Engineering, A336, 64-71 (2002)