DOI QR코드

DOI QR Code

Development of a Forecasting Model for Bacterial Wilt in Hot Pepper

고추 풋마름병 예찰 모형 개발

  • Kim, Ji-Hoon (Department of Biomedical Sciences, Sun Moon University) ;
  • Kim, Sung-Taek (Department of Biomedical Sciences, Sun Moon University) ;
  • Yun, Sung-Chul (Department of Biomedical Sciences, Sun Moon University)
  • 김지훈 (선문대학교 의생명과학과) ;
  • 김성택 (선문대학교 의생명과학과) ;
  • 윤성철 (선문대학교 의생명과학과)
  • Received : 2012.08.09
  • Accepted : 2012.11.23
  • Published : 2012.12.31

Abstract

A population density model for bacterial wilt, which is caused by Ralstonia solanacearum, in hot pepper was developed to estimate the primary infection date after overwintering in the field. We developed the model mechansitically to predict reproduction of the pathogen and pathogensis on seedlings of the host. The model estimates the pathogen's populations both in the soil and in the host. In order to quantify environmental infection factors, various temperatures and initial population densities were determined for wilt symptoms on the seedlings of hot pepper in a chamber. Once, the pathogens living in soil multiply up to 400 cells/g of soil, they can infect successfully in the host. Primary infection in a host was supposed to be started when the population of the pathogen were over $10^9$ cells/g of root tissue. The estimated primary infection dates of bacterial wilt in 2011 in Korea were mostly mid-July or late-July which were 10-15 days earlier than those in 2010. Two kinds of meterological data, synoptic observation and field measurements from paddy field and orchard in Kyunggi, were operated the model for comparing the result dates. About 1-3 days were earlier from field data than from synoptic observation.

고추 풋마름병 예찰을 위한 개체군 모형을 개발하였다. 이 모델은 포장에서 고추 시들음을 일으키는 풋마름병원균의 월동 후 1차 감염 시기를 예측할 수 있는 모델이다. 이 모델은 감염환 중 병원균의 밀도와 기주에서의 병원성에 관여하는 요인이 발병의 주요소라 가정하여 만든 것이다. 병원균 증식은 재배 지역 토양 내부와 기주뿌리 내부에서 모의하였다. 뿌리에서 풋마름병 발병에 영향을 주는 주된 환경요소는 온도 및 감염 초기의 병원균 밀도로 가정하였고, 이 두 요소의 액체 배양액에서 증식실험을 통해 정량화 하였다. 또한 고추묘에서 온도에 따라 발병이 얼마나 달라지는 정도를 실험실 실험을 통해 접종원의 감염 수준을 정량화하여 감염을 모의하는 발병모형을 만들었다. 토양에 서식하는 병원균은 400 cells/g이상에서 기주 뿌리에 성공적으로 침입하고 뿌리내에서 온도에 따라 증식하다가 $10^9$ cells/g 이상이면 최소 고사율에 도달하므로, 이 시기를 풋마름병이 최초 감염(1차 감염)되는 초발일로 추정하였다. 2010년과 11년 전국 기상청 종관관측 자료를 통해 풋마름병을 예측한 결과 2011년에 초발일은 대부분의 지역에서 7월 중순과 하순이었는데 이는 2010년에 비해 10-15일 빠른 것이었다. 또한 경기도 지역내에서 종관관측 자료와 실제 논과 과수원 포장 관측 기상 자료로 구동된 모델 초발일을 비교한 결과 포장 기상 자료의 초발일이 1-3일 빠르게 나타났다.

Keywords

References

  1. Agrios, G. N. 2005. Plant pathology. 5th ed. Academic Press, Burlington, MA, USA. 922 pp.
  2. Billing, E. 1984. Principles and applications of fire bilght risk assessment systems. Acta Horticulturae 151: 15-22.
  3. Cha, C., Gao, P., Chen, Y.-C., Shaw, P. D. and Farrand, S. K. 1998. Production of Acyl-Homoserine lactone quorumsensing signals by gram-negative plant-association bacteria. Mol. Plant Microbe In. 11: 1119-1129. https://doi.org/10.1094/MPMI.1998.11.11.1119
  4. Cheng, G. Y., Legard, D. E., Hunter, J. E. and Burr, T. J. 1989. Modified bean pod assay to detect strains of Pseudomonas syringae pv. syringae that cause bacterial brown spot of snap bean. Plant Dis. 73: 419-423. https://doi.org/10.1094/PD-73-0419
  5. Clough, S. J., Lee, K.-E., Schell, M. A. and Denny, T. P. 1997. A two-component system in Ralstonia solanacearum modulates production of phcA-regulated virulence factors in response to 3-hydroxypalmitic acid methyl ester. J. Bacteriol. 179: 3639-3648.
  6. De Wolf, E. D. and Isard, S. A. 2007. Disease cycle approach to plant disease prediction. Annu. Rev. Phytopathol. 45: 203-220. https://doi.org/10.1146/annurev.phyto.44.070505.143329
  7. Do, K. S., Kang, W. S. and Park, E. W. 2012. A forecast model for the first occurrece of phytophthora blight on chili pepper after overwintering. Plant Pathology J. 28: 172-184. https://doi.org/10.5423/PPJ.2012.28.2.172
  8. Jacquart-Romon, C. and Paulin, J. P. 1991. A computerized warning system for file blight control. Agronomie 11: 511-519. https://doi.org/10.1051/agro:19910608
  9. Kang, W. S., Yun, S. C. and Park, E. W. 2010. Nonlinear regression analysis to determine infection models of Colletotrichum acutatum causing anthracnose of chili pepper using logistic equation. Plant Pathology J. 26: 17-24. https://doi.org/10.5423/PPJ.2010.26.1.017
  10. Kim, B. D., Park, H. G. and Kim, Y. H. 2004. Molecular genetics and breeding of chili pepper in Korea. Center for Plant Molecular Genetics & Breeding Research. 522 pp.
  11. Kim, S. T., Shin, J. W., Kim, J. H. and Yun, S. C. 2010. Temperature and initial inoculum density as the factors of bacterial wilt on hot pepper. Res. Plant Dis. 16: 360.
  12. Lee, J. M. 2010. Characterization of sources of resistance to bacterial wilt and breeding cytoplasmic male sterile lines for resistance to bacterial wilt and Phytophthora blight in Capsicum Pepper. MS thesis. Kyungbuk National Univ, Daegu, Korea.
  13. Lee, K. H., Ahn, K. S., Song, M. K., Yu, S. E., Choi, M. K., Lim, S. C. and Kim, H. T. 2011. Disease incidence on red pepper of chungbuk province in 2011. Res. Plant Dis. 17: 442. (In Korean)
  14. Park, S. G. and Kim, K. C. 1991. Pathogenicities of pathogens and disease complex associated with wilt of hot pepper plants croppped in plastic house. Korean J. Plant Pathol. 7: 28-36.

Cited by

  1. Inactivation of Ralstonia Solanacearum using Filtration-Plasma Process vol.23, pp.6, 2014, https://doi.org/10.5322/JESI.2014.23.6.1165
  2. Development of a Model to Predict the Primary Infection Date of Bacterial Spot (Xanthomonas campestris pv. vesicatoria) on Hot Pepper vol.30, pp.2, 2014, https://doi.org/10.5423/PPJ.OA.09.2013.0090