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CROSS COMMUTATORS ON BACKWARD SHIFT

INVARIANT SUBSPACES OVER THE BIDISK II

Kei Ji Izuchi and Kou Hei Izuchi

Abstract. In the previous paper, we gave a characterization of backward
shift invariant subspaces of the Hardy space over the bidisk on which
[Szn , S∗

w] = 0 for a positive integer n ≥ 2. In this case, it holds that

Szn = cI for some c ∈ C. In this paper, it is proved that if [Sφ, S∗
w] = 0

and φ ∈ H∞(Γz), then Sφ = cI for some c ∈ C.

1. Introduction

Let Γ2 be the 2-dimensional unit torus. We write (z, w) = (eis, eit) for
variables in Γ2 = Γz × Γw. Let L2 = L2(Γ2) be the usual Lebesgue space on
Γ2 with the norm

∥f∥2 =
(∫ 2π

0

∫ 2π

0

|f(eis, eit)|2 dsdt
(2π)2

)1/2

.

With the usual inner product, L2 is a Hilbert space. Let H2 = H2(Γ2) be the
Hardy space over Γ2. We denote by H2(Γz) and H

2(Γw) the Hardy spaces on
the unit circle Γ in variables z and w, respectively. We think of H2(Γz) and
H2(Γw) as closed subspaces H2. For each f ∈ H2, we can write f as

f =

∞∑
i=0

⊕fi(w)zi, fi(w) ∈ H2(Γw).

Let P be the orthogonal projection from L2 onto H2. For a closed subspace
M of L2, we denote by PM the orthogonal projection from L2 onto M . For a
function ψ ∈ L∞, the Toeplitz operator Tψ on H2 is defined by Tψf = P (ψf)
for f ∈ H2. It is well known that T ∗

ψ = Tψ, and T
∗
φ(z)Tψ(w) = Tψ(w)T

∗
φ(z) for

every φ(z) ∈ H∞(Γz) and ψ(w) ∈ H∞(Γw). A function f ∈ H2 is called inner
if |f | = 1 on Γ2 almost everywhere. A nonzero closed subspace M of H2 is
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called invariant if zM ⊂M and wM ⊂M . In one variable case, the well known
Beurling theorem [2] says that an invariant subspace M of H2(Γz) has a form
M = q(z)H2(Γz), where q(z) is an inner function. In two variable case, the
structure of invariant subspaces of H2 is extremely complicated, see [3, 10].

Let M be an invariant subspace of H2 with M ̸= {0} and M ̸= H2. Then
T ∗
z (H

2 ⊖M) ⊂ H2 ⊖M and T ∗
w(H

2 ⊖M) ⊂ H2 ⊖M . In this paper, we write

N = H2 ⊖M.

Usually, N is called a backward shift invariant subspace of H2. See [1, 9] for
studies of backward shift invariant subspaces over the unit circle Γ.

For a function ψ ∈ L∞, we denote by Rψ the operator on M defined by
Rψf = PM (ψf) for f ∈ M . It holds R∗

ψ = Rψ and Rz = Tz|M . We denote

by [Rz, R
∗
w] the cross commutator of Rz and Rw, that is, [Rz, R

∗
w] = RzR

∗
w −

R∗
wRz. In [8], Mandrekar proved that [Rz, R

∗
w] = 0 if and only if M is Beurling

type, that is, M = qH2 for some inner function q on Γ2. This is a nice
characterization of Beurling type invariant subspaces of H2. More generally,
in [4] the authors proved that [Rz, R

∗
w] = 0 if and only if [Rψ1(z), R

∗
ψ2(w)] = 0

for nonconstant functions ψ1(z), ψ2(w) ∈ H∞(Γ).
We define the operator Sψ on N by Sψf = PN (ψf) for f ∈ N . Then we

have S∗
ψ = Sψ and S∗

z = T ∗
z |N . In [6], it is proved that [Sz, S

∗
w] = 0 if and only

if N has one of the following forms;

· N = H2 ⊖ q1(z)H
2,

· N = H2 ⊖ q2(w)H
2,

· N = (H2 ⊖ q1(z)H
2) ∩ (H2 ⊖ q2(w)H

2)

for nonconstant one variable inner functions q1(z) and q2(w). In [7], it is shown
that the condition [Sz2 , S

∗
w] = 0 does not imply [Sz, S

∗
w] = 0. In [5], the authors

proved that for n ≥ 2, [Szn , S
∗
w] = 0 if and only if one of the following conditions

holds;

(i) [Sz, S
∗
w] = 0,

(ii) SznS
∗
w = 0,

(iii) there exists a Blaschke product b(z) with

b(z) =
n∏
j=1

z − αj
1− αjz

, 0 < |αj | < 1,

where αi ̸= αj for every i, j with i ̸= j and αn1 = αn2 = · · · = αnn such
that N ⊂ H2 ⊖ b(z)H2.

In [7, Theorem 2.2], it is proved that (ii) holds if and only if either N ⊂ H2(Γz)
or N ⊂ H2 ⊖ znH2. If N ⊂ H2(Γz), then we have [Sz, S

∗
w] = 0. Moreover,

in [5] it is proved that if [Szn , S
∗
w] = 0 and [Sz, S

∗
w] ̸= 0, then M ∩H∞(Γz) =

θ(z)H∞(Γz) for an inner function θ(z), and zn ∈ C + θ(z)H∞(Γz). In this
case, we have Szn = cI for some c ∈ C.

The purpose of this paper is to generalize the above phenomeron. Let
φ(z) ∈ H∞(Γz) be a nonconstant function. Suppose that [Sφ(z), S

∗
w] = 0 and
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[Sz, S
∗
w] ̸= 0. In Section 2, we prove thatM∩H∞(Γz) ̸= {0} andM∩H2(Γz) ̸=

H2(Γz). Hence by the Beurling theorem, M ∩H2(Γz) = θ(z)H2(Γz) for a non-
constant inner function θ(z). Thus we get θ(z)H2 ⊂M . Write

Mθ =M ⊖ θ(z)H2.

We prove that Mθ ̸= {0} and T ∗
φ(z)Mθ ⊂ Mθ. In another word, φ(z)N ⊂

N ⊕ θ(z)H2 holds. In Section 3, we study on the one variable Hardy space
H2(Γz). Let N1, N2 be backward shift invariant subspaces of H2(Γz) satisfying
{0} ≠ N2 ⫋ N1 ̸= H2(Γz). It is proved that φ(z)N2 ⊂ N2 ⊕ (H2(Γz)⊖N1) if
and only if φ(z) ∈ C+(H2(Γz)⊖N1). As applications of these facts, in Section
4 we prove that φ(z) ∈ C+ θ(z)H∞(Γz) and Sφ = cI for some c ∈ C.

2. Equivalent conditions for [Sφ(z), S
∗
w] = 0

Let N be a backward shift invariant subspace of H2 with N ̸= {0} and N ̸=
H2, and let φ(z) ∈ H∞(Γz) be a nonconstant function. We write operators Tφ
and T ∗

w on H2 =M ⊕N in the matrix forms as

Tφ =

(
∗ PMTφ|N
0 Sφ

)
, T ∗

w =

(
∗ 0

PNT
∗
w|M S∗

w

)
on H2 =

 M
⊕
N

 .

Let

A = PMTφ|N and B = PNT
∗
w|M .

Since TφT
∗
w = T ∗

wTφ on H2, we have

SφS
∗
w = BA+ S∗

wSφ.

Hence we get the following.

Lemma 2.1. [Sφ, S
∗
w] = 0 if and only if BA = 0.

It is not difficult to see that

kerB = {f ∈M : T ∗
wf ∈M}

= {f ∈M ⊖ wM : T ∗
wf = 0} ⊕ wM

=
(
M ∩H2(Γz)

)
⊕ wM

and

rangeA =M ⊖ kerA∗ =M ⊖ {f ∈M : T ∗
φf ∈M}.

Then by Lemma 2.1, we have the following.

Lemma 2.2. [Sφ, S
∗
w] = 0 if and only if

M ⊖ {f ∈M : T ∗
φf ∈M} ⊂

(
M ∩H2(Γz)

)
⊕ wM.

Lemma 2.3. If [Sφ, S
∗
w] = 0 and [Sz, S

∗
w] ̸= 0, then M ∩H2(Γz) is a nontrivial

invariant subspace of H2(Γz).
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Proof. Since M ̸= H2, trivially M ∩ H2(Γz) ̸= H2(Γz) holds. Suppose that
M ∩H2(Γz) = {0}. By Lemma 2.2,

M ⊖ {f ∈M : T ∗
φf ∈M} ⊂ wM.

Hence

M ⊖ wM ⊂ {f ∈M : T ∗
φf ∈M}.

Since TwT
∗
φ = T ∗

φTw on H2, if f ∈M and T ∗
φf ∈M , then T ∗

φ(w
nf) = wnT ∗

φf ∈
M for every n ≥ 0, so that by the above we get

wn(M ⊖ wM) ⊂ {f ∈M : T ∗
φf ∈M}.

Therefore

M =
∞∑
n=0

⊕wn(M ⊖ wM) ⊂ {f ∈M : T ∗
φf ∈M}.

Thus we get T ∗
φM ⊂M . This shows that φ(z)N ⊂ N .

Let

A = {ψ(z) ∈ H∞(Γz) : ψN ⊂ N}.
Then both functions 1 and φ(z) are contained in A. For ψ ∈ A and h ∈ N , we
have

N ∋ T ∗
z (ψh) = (T ∗

z ψ)h+ ψ(0)T ∗
z h.

Hence (T ∗
z ψ)N ⊂ N , so that T ∗

zA ⊂ A. It is easy to see that A is a weak-∗

closed subalgebra of H∞(Γz). Let

L =
{
f(z) ∈ H1(Γz) :

∫ 2π

0

f(eiθ)ψ(eiθ)
dθ

2π
= 0 for every ψ(z) ∈ A

}
.

Then L is a closed subspace of H1(Γz). Since T ∗
zA ⊂ A and 1 ∈ A, we have

zL ⊂ L.
Suppose that L ̸= {0}. By the Beurling theorem, L = q(z)H1(Γz) for an

inner function q(z). Since 1 ∈ A, q(0) = 0. Hence zq(z) ∈ H∞(Γz). Since
φ(z)n ∈ A for n ≥ 1,∫ 2π

0

e−iθq(eiθ)φ(eiθ)
n
eiθh(eiθ)

dθ

2π
=

∫ 2π

0

q(eiθ)h(eiθ)φ(eiθ)
n dθ

2π
= 0

for every h(z) ∈ H1(Γz). Hence zq(z)φ(z)
n
∈ H∞(Γz) for every n ≥ 1. By

the Schneider theorem [11], we have φ(z) ∈ H∞(Γz). This shows that φ(z) is
constant. Since we assumed that φ(z) is nonconstant, this is a contradiction.
Therefore L = {0}. Hence A = H∞(Γz). Especially, we have z ∈ A and
zN ⊂ N . Then Tz|N = Sz. Since T ∗

w|N = S∗
w and TzT

∗
w = T ∗

wTz on H2, we
have SzS

∗
w = S∗

wSz. This is a desired contradiction. □

In the rest of this section, we assume thatM∩H2(Γz) ̸= {0}. SinceM ̸= H2,
M ∩H2(Γz) ̸= H2(Γz). By the Beurling theorem,

M ∩H2(Γz) = θ(z)H2(Γz)
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for some nonconstant inner function θ(z). Hence θ(z)H2 ⊂M . Write

Mθ =M ⊖ θ(z)H2.

Then

M =Mθ ⊕ θ(z)H2 and H2 ⊖ θ(z)H2 =Mθ ⊕N.

By the definition of Mθ, we have wMθ ⊂ Mθ and Mθ ∩ H2(Γz) = {0}. Note
that if [Sφ, S

∗
w] = 0 and [Sz, S

∗
w] ̸= 0, then Mθ ̸= {0}. For, if Mθ = {0}, then

M = θ(z)H2 and N = H2 ⊖ θ(z)H2. Then we have [Sz, S
∗
w] = 0, see [6], and

this is a contradiction.

Lemma 2.4. Let f ∈Mθ. Then T ∗
wf ∈Mθ if and only if f ∈ wMθ.

Proof. Suppose that T ∗
wf ∈Mθ. Then

f − f(z, 0) ∈ wMθ ⊂Mθ.

Since f ∈ Mθ, f(z, 0) ∈ Mθ. Since Mθ ∩ H2(Γz) = {0}, f(z, 0) = 0. Hence
f ∈ wMθ. The converse is trivial. □

Let Pθ be the orthogonal projection from H2 onto H2 ⊖ θ(z)H2, and Qφ be
the operator on H2 ⊖ θ(z)H2 defined by Qφf = Pθ(φf) for f ∈ H2 ⊖ θ(z)H2.
We can write both operators Qφ and T ∗

w|(H2⊖θH2) as

Qφ =

(
∗ PMθ

Tφ|N
0 Sφ

)
on H2 ⊖ θ(z)H2 =

 Mθ

⊕
N


and

T ∗
w|(H2⊖θH2) =

(
∗ 0

PNT
∗
w|Mθ

S∗
w

)
on H2 ⊖ θ(z)H2 =

 Mθ

⊕
N

 .

Let

Aθ = PMθ
Tφ|N and Bθ = PNT

∗
w|Mθ

.

Lemma 2.5. [Sφ, S
∗
w] = 0 if and only if BθAθ = 0.

Proof. Let f ∈ H2⊖θ(z)H2 =Mθ⊕N . We have T ∗
w(φ(z)f) = φ(z)T ∗

wf . Write

φ(z)f = Qφf ⊕ f1 ∈ (Mθ ⊕N)⊕ θ(z)H2.

Since T ∗
wf1 ∈ θ(z)H2 and T ∗

w(Qφf) ⊥ θ(z)H2, we get T ∗
wQφf = QφT

∗
wf .

Thus QφT
∗
w = T ∗

wQφ on Mθ ⊕ N . Similarly as Lemma 2.1, we can prove the
assertion. □

The following is a slight generalization of [7, Theorem 4.4].

Theorem 2.6. The following conditions are equivalent;

(i) [Sφ, S
∗
w] = 0,

(ii) Mθ ⊖ {f ∈Mθ : T
∗
φf ∈Mθ} ⊂ wMθ,

(iii) T ∗
φMθ ⊂Mθ,
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(iv) φ(z)N ⊂ N ⊕ θ(z)H2.

Proof. By Lemma 2.4,

kerBθ = {f ∈Mθ : T
∗
wf ∈Mθ} = wMθ.

Also we have

rangeAθ =Mθ ⊖ kerA∗
θ =Mθ ⊖ {f ∈Mθ : T

∗
φf ∈Mθ}.

Hence by Lemma 2.5, we get (i) ⇔ (ii).
If (ii) holds, then

Mθ ⊖ wMθ ⊂ {f ∈Mθ : T
∗
φf ∈Mθ}.

Hence for each n ≥ 0, we have

T ∗
φ(z)w

n(Mθ ⊖ wMθ) = wnT ∗
φ(z)(Mθ ⊖ wMθ) ⊂ wnMθ ⊂Mθ.

Since

Mθ =

∞∑
n=0

⊕wn(Mθ ⊖ wMθ),

we have T ∗
φMθ ⊂Mθ. Thus we get (iii).

(iii) ⇒ (ii) is trivial.
It is not difficult to see that (iii) ⇔ (iv). □
Suppose that [Sφ, S

∗
w] = 0 and [Sz, S

∗
w] ̸= 0. Then we proved that

θ(z)H2 ⫋M and φ(z)(H2 ⊖M) ⊂ (H2 ⊖M)⊕ θ(z)H2.

Note that θ(z)H2 and M are invariant subspaces of H2. Now we fix an inner
function θ(z). Here we have a question for which φ(z) ∈ H∞(Γz) satisfies the
above condition. In the next section, we study a similar question in the one
variable Hardy space H2(Γz). In Section 4, we revisit on this question.

3. A theorem on the unit circle

In this section, we prove the following theorem.

Theorem 3.1. Let N1, N2 be backward shift invariant subspaces of H2(Γz)
with 0 ̸= N2 ⫋ N1 ̸= H2(Γz), and φ(z) ∈ N1. Then

φ(N2 ∩H∞(Γz)) ⊂ N2 ⊕ (H2(Γz)⊖N1)

if and only if φ(z) = cPN11 for some c ∈ C. In this case, if we define the
operator Sφ on N1 by Sφf = PN1(φf) for f ∈ N1, then Sφ = cI.

To prove the theorem, we need two lemmas which are not difficult to show.

Lemma 3.2. Let N be a backward shift invariant subspace of H2(Γz). Then
N ∩H∞(Γz) is dense in N .

Lemma 3.3. Let N be a backward shift invariant subspace of H2(Γz) with
N ̸= {0} and N ̸= H2(Γz). If φ ∈ H2(Γz) is a nonconstant function, then
φ
(
N ∩H∞(Γz)

)
̸⊂ N .
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Proof of Theorem 3.1. By the Beurling theorem,

H2(Γz)⊖N1 = θH2(Γz)

for some nonconstant inner function θ.
First, suppose that

φ(N2 ∩H∞(Γz)) ⊂ N2 ⊕ (H2(Γz)⊖N1).

Since N2 ̸= {0}, by Lemma 3.2 there exists h1 ∈ N2 ∩H∞(Γz) with h1(0) = 1.
Write

(3.1) φh1 = f1 ⊕ θg1 ∈ N2 ⊕
(
H2(Γz)⊖N1

)
= N2 ⊕ θH2(Γz).

Also for each h ∈ N2 ∩H∞(Γz), we can write

(3.2) φh = f ⊕ θg ∈ N2 ⊕ θH2(Γz).

When h(0) = 0, we shall prove that

(3.3) g(0) = 0.

Since
T ∗
z (φh) = φT ∗

z h+ h(0)T ∗
z φ = φT ∗

z h,

by (3.2) we have

φT ∗
z h = T ∗

z (φh) = T ∗
z (f + θg)

= T ∗
z f + θT ∗

z g + g(0)T ∗
z θ

= (T ∗
z f + g(0)T ∗

z θ) + θT ∗
z g.

Note that T ∗
z h ∈ N2∩H∞(Γz) and T

∗
z f+g(0)T

∗
z θ ⊥ θH2(Γz). By the assump-

tion, φT ∗
z h ∈ N2 ⊕ θH2(Γz). Hence

T ∗
z f + g(0)T ∗

z θ ∈ N2.

Since T ∗
z f ∈ N2, g(0)T

∗
z θ ∈ N2. To prove (3.3), suppose that g(0) ̸= 0. Then

T ∗
z θ ∈ N2. Let N be a backward shift invariant subspace generated by T ∗

z θ.
Since N1 = H2(Γz) ⊖ θH2(Γz), we have N = N1. Since T ∗

z θ ∈ N2, N ⊂ N2.
This contradicts N2 ⫋ N1. Therefore g(0) = 0. Thus we get (3.3).

By (3.1) and (3.2),

φ(h− h(0)h1) = (f − h(0)f1)⊕ θ(g − h(0)g1) ∈ N2 ⊕ θH2(Γz).

Since (h− h(0)h1)(0) = 0, by (3.3) we get

(3.4) g(0) = h(0)g1(0).

By (3.2) again,

φT ∗
z h+ h(0)T ∗

z φ = T ∗
z (φh) = (T ∗

z f + g(0)T ∗
z θ) + θT ∗

z g,

so that
φT ∗

z h =
(
− h(0)T ∗

z φ+ T ∗
z f + g(0)T ∗

z θ
)
⊕ θT ∗

z g.

Since T ∗
z h ∈ N2 ∩H∞(Γz) and φ ⊥ θH2(Γz), by the assumption we have

−h(0)T ∗
z φ+ T ∗

z f + g(0)T ∗
z θ ∈ N2.
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Similarly we have

φT ∗2
z h =

(
− (T ∗

z h)(0)T
∗
z φ− h(0)T ∗2

z φ+ T ∗2
z f + g(0)T ∗2

z θ

+(T ∗
z g)(0)T

∗
z θ

)
⊕ θT ∗2

z g.

Repeating the same argument, we get

φT ∗n
z h =

[
−
( n−1∑
j=0

(
T ∗(n−j−1)
z h

)
(0)T ∗(j+1)

z φ
)
+ T ∗n

z f

+
( n−1∑
j=0

(T ∗j
z g)(0)T ∗(n−j)

z θ
)]

⊕ θT ∗n
z g.

Since h ∈ N2 ∩H∞(Γz), T
∗n
z h ∈ N2 ∩H∞(Γz). Hence by (3.2) and (3.4),

(T ∗n
z g)(0) = (T ∗n

z h)(0)g1(0)

for every n ≥ 0. This shows that g = g1(0)h. By (3.2), we obtain

(φ− g1(0)θ)h = f ∈ N2

for every h ∈ N2 ∩ H∞(Γz). By Lemma 3.3, φ − g1(0)θ is constant. Write
φ− g1(0)θ = c. Since φ ∈ N1, we have φ = cPN11.

Next, suppose that φ = cPN11. Then

φ = cPN11 = c(1− θ(0)θ).

Hence for f ∈ N2 ∩H∞(Γz), we have

φf = cf − cθ(0)θf ∈ N2 ⊕ θH2(Γz).

Thus we get φ
(
N2 ∩H∞(Γz)

)
⊂ N2 ⊕ (H2(Γz)⊖N1). □

Corollary 3.4. Let N1, N2 be backward shift invariant subspaces of H2(Γz)
with {0} ̸= N2 ⫋ N1 ̸= H2(Γz), and φ(z) ∈ L∞(Γz). Define the operator Sφ
on N1 by Sφh = PN1(φh) for h ∈ N1. Then SφN2 ⊂ N2 if and only if

φ ∈ C+H2(Γz)
⊥ + (H2(Γz)⊖N1) = H2(Γz) + (H2(Γz)⊖N1).

Proof. Write H2(Γz)⊖N1 = θH2(Γz) for some inner function θ. Let

φ = φ1 ⊕ φ2 ⊕ θφ3 ∈ H2(Γz)
⊥ ⊕N1 ⊕ θH2(Γz).

It is easy to see that

PN1

(
φ1(N2 ∩H∞(Γz))

)
⊂ N2

and

PN1

(
θφ3(N2 ∩H∞(Γz))

)
= {0}.
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Hence SφN2 ⊂ N2 if and only if PN1

(
φ2(N2 ∩H∞(Γz))

)
⊂ N2. By Theorem

3.1, SφN2 ⊂ N2 if and only if

φ = φ1 + cPN11 + θφ3

= φ1 + c(1− θ(0)θ) + θφ3

= φ1 + c+ θ(φ3 − cθ(0)).

This completes the proof. □
The following corollaries follow from Corollary 3.4 directly.

Corollary 3.5. Let N1, N2 be backward shift invariant subspaces of H2(Γz)
with {0} ̸= N2 ⫋ N1 ̸= H2(Γz), and φ(z) ∈ H∞(Γz). Then φN2 ⊂ N2 ⊕
(H2(Γz)⊖N1) if and only if φ ∈ C+ (H2(Γz)⊖N1).

Corollary 3.6. Let N1, N2 be backward shift invariant subspaces of H2(Γz)
with {0} ̸= N2 ⊂ N1 ̸= H2(Γz), and φ(z) ∈ H∞(Γz). If φN2 ⊂ N2⊕(H2(Γz)⊖
N1), then N1 = N2 if and only if φ /∈ C+ (H2(Γz)⊖N1).

Corollary 3.7. LetM1,M2 be invariant subspaces of H2(Γz) with {0} ≠M1 ⫋
M2 ̸= H2(Γz), and φ(z) ∈ H∞(Γz). Then T ∗

φ(M2 ⊖M1) ⊂ M2 ⊖M1 if and
only if φ ∈ C+M1.

Corollary 3.8. LetM1,M2 be invariant subspaces of H2(Γz) with {0} ≠M1 ⫋
M2 ⊂ H2(Γz), and φ(z) ∈ H∞(Γz). If T ∗

φ(M2 ⊖ M1) ⊂ M2 ⊖ M1, then

φ /∈ C+M1 if and only if M2 = H2(Γz).

4. The main theorem

As applications of the results in Sections 2 and 3, we prove the following.

Theorem 4.1. Let N be a backward shift invariant subspace of H2 with N ̸=
{0} and N ̸= H2. Let φ(z) ∈ H∞(Γz) be a nonconstant function. If [Sφ, S

∗
w] =

0 and [Sz, S
∗
w] ̸= 0, then φ(z)− c ∈M ∩H∞(Γz) for some c ∈ C and Sφ = cI.

Proof. By Lemma 2.3, M ∩ H2(Γz) = θ(z)H2(Γz) for a nonconstant inner
function θ(z). Since θ(z)H2 ⊂M , as in Section 2 we write

(4.1) Mθ =M ⊖ θ(z)H2.

Since [Sz, S
∗
w] ̸= 0, we have Mθ ̸= {0}. By Theorem 2.6,

(4.2) φ(z)N ⊂ N ⊕ θ(z)H2

and

(4.3) T ∗
φMθ ⊂Mθ.

To prove the assertion, we assume that

(4.4) φ(z)− c /∈ θ(z)H∞(Γz)

for every c ∈ C. We shall prove that [Sz, S
∗
w] = 0. This will be a desired

contradiction. We consider two cases θ(0) = 0 and θ(0) ̸= 0 separately.



148 K. J. IZUCHI AND K. H. IZUCHI

Case 1. Suppose that θ(0) = 0. If θ(z) = cz for some constant c with |c| = 1,
then it is easy to see that

M = θ(z)H2 + q(w)H2

for either a nonconstant inner function q(w) or q(w) = 0. In this case, by [6]
we have [Sz, S

∗
w] = 0. So, we may assume that θ(z) = zθ1(z) for a nonconstant

inner function θ1(z). Then

(4.5) H2 ⊖ θ(z)H2 = H2(Γw)⊕ z
(
H2 ⊖ θ1(z)H

2
)
.

We divide the proof into two subcases.

Subcase 1.1. Assume that θ1(z)Mθ ⊂ θ(z)H2. Then Mθ ⊂ zH2. Hence
H2(Γw) ⊂ N . For each nonnegative integer n, let

Ln =
{
f(z) ∈ H2(Γz)⊖ θ(z)H2(Γz) : w

nf(z) ∈ N
}
.

Then 1 ∈ Ln, Ln is a nonzero closed subspace of H2(Γz) ⊖ θ(z)H2(Γz), and
T ∗
z Ln ⊂ Ln. By (4.2),

wnφ(z)Ln ⊂ φ(z)N ⊂ N ⊕ θ(z)H2,

so we have

φ(z)Ln ⊂ Ln ⊕ θ(z)H2(Γz).

By (4.4) and Corollary 3.6, Ln = H2(Γz)⊖ θ(z)H2(Γz). Hence

wn
(
H2(Γz)⊖ θ(z)H2(Γz)

)
⊂ N

for every n ≥ 0. Therefore

H2 ⊖ θ(z)H2 =
∞∑
n=0

⊕wn
(
H2(Γz)⊖ θ(z)H2(Γz)

)
⊂ N.

By (4.1), H2⊖θ(z)H2 =Mθ⊕N , so thatMθ = {0}. This contradicts [Sz, S∗
w] ̸=

0.

Subcase 1.2. Assume that θ1(z)Mθ ̸⊂ θ(z)H2. By (4.5), for every g ∈ Mθ

we can write

(4.6) g = fg(w)⊕ zhg(z, w),

where fg ∈ H2(Γw) and hg ∈ H2 ⊖ θ1(z)H
2. Since θ1(z)Mθ ⊂M , we have

θ1(z)g = θ1(z)fg(w)⊕ zθ1(z)hg(z, w) ∈M =Mθ ⊕ θ(z)H2,

so that θ1(z)fg(w) ∈Mθ. Since θ1(z)Mθ ̸⊂ θ(z)H2, fg(w) ̸= 0 for some g ∈Mθ.

Then {fg(w) : g ∈ Mθ} ̸= {0}. Since wMθ ⊂ Mθ, by (4.6) {fg(w) : g ∈Mθ}
is a nonzero Tw-invariant subspace of H2(Γw). Hence there is a one variable
inner function q(w) such that

(4.7) q(w)H2(Γw) = {fg(w) : g ∈Mθ}.
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Since θ1(z){fg(w) : g ∈Mθ} ⊂Mθ, we have

(4.8) θ1(z)q(w)H
2(Γw) ⊂Mθ.

If q(w) is constant, then θ1(z) ∈Mθ and

θ(z)H2(Γz) ⫋ C · θ1(z) + θ(z)H2(Γz) ⊂M ∩H2(Γz),

so that θ(z)H2(Γz) ̸= M ∩ H2(Γz). This is a contradiction. Hence q(w) is
nonconstant. By (4.6) and (4.7), we get

(4.9)
(
H2(Γw)⊖ q(w)H2(Γw)

)
⊥Mθ.

For each nonnegative integer n, let

Ln =
{
f(z) ∈ H2(Γz)⊖ θ(z)H2(Γz) : f(z)w

nq(w) ∈Mθ

}
.

By (4.8), θ1(z) ∈ Ln. Since zMθ ⊂ Mθ ⊕ θ(z)H2, Ln ⊕ θ(z)H2(Γz) is an
invariant subspace of H2(Γz). By (4.3), we have T ∗

φLn ⊂ Ln. By (4.4) and

Corollary 3.8, Ln = H2(Γz)⊖ θ(z)H2(Γz). Hence

wnq(w)
(
H2(Γz)⊖ θ(z)H2(Γz)

)
⊂Mθ

for every n ≥ 0. Thus we get

(4.10) q(w)
(
H2 ⊖ θ(z)H2

)
⊂Mθ.

By (4.9),H2(Γw)⊖q(w)H2(Γw)⊂N . For each ψ(w)∈H2(Γw)⊖q(w)H2(Γw),
let

Lψ =
{
f(z) ∈ H2(Γz)⊖ θ(z)H2(Γz) : f(z)ψ(w) ∈ N

}
.

Then 1 ∈ Lψ, and in the same way as Subcase 1.1, Lψ is a nonzero closed
subspace of H2(Γz) ⊖ θ(z)H2(Γz) such that T ∗

z Lψ ⊂ Lψ and φ(z)Lψ ⊂ Lψ ⊕
θ(z)H2(Γz). Hence by (4.4) and Corollary 3.6, Lψ = H2(Γz) ⊖ θ(z)H2(Γz).
Therefore

ψ(w)
(
H2(Γz)⊖ θ(z)H2(Γz)

)
⊂ N

for every ψ(w) ∈ H2(Γw)⊖ q(w)H2(Γw), and hence

(4.11)
(
H2 ⊖ θ(z)H2

)
⊖ q(w)

(
H2 ⊖ θ(z)H2

)
⊂ N.

Since H2 ⊖ θ(z)H2 =Mθ ⊕N , by (4.10) and (4.11) we get

N =
(
H2 ⊖ θ(z)H2

)
⊖ q(w)

(
H2 ⊖ θ(z)H2

)
.

By [6], this shows that [Sz, S
∗
w] = 0.

Case 2. Suppose that θ(0) ̸= 0. Let φ′(z) = φ(z) − ⟨φ, θ⟩θ(z). Then
Sφ = Sφ′ , so that we may assume that φ ⊥ θ. Write

(4.12) φ(z) = φ1(z) + θ(z)zφ2(z),

where φ1 ∈ H2(Γz) ⊖ θH2(Γz) and φ2 ∈ H2(Γz). By (4.4), φ1(z) ̸= 0. Since
θ(0) ̸= 0, T ∗

z φ1(z) ̸= 0. For each h ∈ N , by (4.2) we can write

φh = fh + θgh ∈ N ⊕ θH2.



150 K. J. IZUCHI AND K. H. IZUCHI

Applying T ∗
z for the both side of the above, we have

φT ∗
z h+ h(0, w)T ∗

z φ = T ∗
z fh + g(0, w)T ∗

z θ + θT ∗
z gh.

Hence by (4.12),

φT ∗
z h = −h(0, w)T ∗

z φ+ T ∗
z fh + gh(0, w)T

∗
z θ + θT ∗

z gh

= −h(0, w)T ∗
z φ1 + T ∗

z fh + gh(0, w)T
∗
z θ + θ(T ∗

z gh − h(0, w)φ2).

Note that

−h(0, w)T ∗
z φ1 + T ∗

z fh + gh(0, w)T
∗
z θ ⊥ θH2.

Since h ∈ N , we have T ∗
z h ∈ N , so that by (4.2) we have

−h(0, w)T ∗
z φ1 + T ∗

z fh + gh(0, w)T
∗
z θ ∈ N.

Since fh ∈ N , also we have T ∗
z fh ∈ N and

(4.13) −h(0, w)T ∗
z φ1 + gh(0, w)T

∗
z θ ∈ N.

Write

Θ(z) = θ2(z)− θ(0)θ(z).

We have

T ∗
θ

θ−θ(0)
z

T ∗
z = T ∗

θ2−θ(0)θ = T ∗
Θ.

Since

T ∗
θ

θ−θ(0)
z

N ⊂ N,

−h(0, w)
(
T ∗
Θφ1 + aT ∗

Θθ
)
+ g(0, w)T ∗

Θθ ∈ N.

Since φ1 ∈ N ⊂ H2 ⊖ θH2, we have T ∗
Θφ1 = 0. Since T ∗

Θθ = −θ(0), we get

aθ(0)h(0, w)− θ(0)g(0, w) ∈ N.

Since θ(0) ̸= 0,

ah(0, w)− g(0, w) ∈ N.

Thus we get

ah(0, w)− g(0, w) ⊥ θ(z)H2.

Because θ(0) ̸= 0, we have ah(0, w)− g(0, w) = 0. Hence by (4.9),

−h(0, w)T ∗
z φ1(z) ∈ N.

Note that T ∗
z φ1(z) ̸= 0. In the same way as Subcase 1.2,

h(0, w)
(
H2(Γz)⊖ θ(z)H2(Γz)

)
⊂ N ⊂ H2 ⊖ θ(z)H2

for every h ∈ N . Since T ∗
wN ⊂ N and N ̸= {0}, {h(0, w) : h ∈ N} is a

nontrivial T ∗
w-invariant subspace of H2(Γw), so that

{h(0, w) : h ∈ N} = H2(Γw)⊖ q(w)H2(Γw)

for either nontrivial inner function q(w) or q(w) = 0. Hence

(H2 ⊖ θ(z)H2)⊖ q(w)(H2 ⊖ θ(z)H2) ⊂ N.
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For every f ∈ N , write

f =
∞∑
n=0

⊕fn(w)zn.

Since T ∗
zN ⊂ N , fn(w) ∈ H2(Γw)⊖ q(w)H2(Γw) for every n ≥ 0. Hence

N ⊂ (H2 ⊖ θ(z)H2)⊖ q(w)(H2 ⊖ θ(z)H2).

Therefore
N = (H2 ⊖ θ(z)H2)⊖ q(w)(H2 ⊖ θ(z)H2).

This shows that [Sz, S
∗
w] = 0. This completes the proof. □
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