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CROSS COMMUTATORS ON BACKWARD SHIFT
INVARIANT SUBSPACES OVER THE BIDISK II

KEgr J1 IzucHi AND Kou HEer IzucHI

ABSTRACT. In the previous paper, we gave a characterization of backward
shift invariant subspaces of the Hardy space over the bidisk on which
[Szn,S%] = 0 for a positive integer n > 2. In this case, it holds that
S.n = cl for some ¢ € C. In this paper, it is proved that if [S,,S5] =0
and ¢ € H*(T';), then S, = cI for some c € C.

1. Introduction

Let I'? be the 2-dimensional unit torus. We write (z,w) = (e, e®) for
variables in I'? = T', x I'y,. Let L? = L?(I'?) be the usual Lebesgue space on

I'? with the norm
21 p27
o dsdt \1/2
_ s _it\|2
||fH2_ (/(; /(; ‘f(@ € )| (27_‘_)2) .

With the usual inner product, L? is a Hilbert space. Let H? = H?(I'?) be the
Hardy space over I'2. We denote by H2(T',) and H?(T',,) the Hardy spaces on
the unit circle I' in variables z and w, respectively. We think of H?(T',) and
H?(T',,) as closed subspaces H2. For each f € H?, we can write f as

F=Y fwz,  fi(w) e HA(T,).
=0

Let P be the orthogonal projection from L? onto H?. For a closed subspace
M of L?, we denote by Py; the orthogonal projection from L? onto M. For a
function ¢ € L, the Toeplitz operator Ty, on H? is defined by Ty f = P(¢ f)
for f € H?. It is well known that T, = Ty, and T;(Z)T"/)(w) = Tw(w)T;(z) for
every p(z) € H*(T',) and ¢(w) € H*(I',,). A function f € H? is called inner
if |f| = 1 on I'? almost everywhere. A nonzero closed subspace M of H? is
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called invariant if zM C M and wM C M. In one variable case, the well known
Beurling theorem [2] says that an invariant subspace M of H?(T',) has a form
M = q(z)H*(T,), where ¢(z) is an inner function. In two variable case, the
structure of invariant subspaces of H? is extremely complicated, see [3, 10].
Let M be an invariant subspace of H? with M # {0} and M # H?. Then
T:(H*6 M) C H>© M and T} (H> © M) C H? © M. In this paper, we write

N =H?o M.

Usually, N is called a backward shift invariant subspace of H2. See [1, 9] for
studies of backward shift invariant subspaces over the unit circle I'.

For a function ¢ € L*°, we denote by Ry the operator on M defined by
Ryf = Pu(yf) for f € M. It holds R}, = Ry and R, = T.|p. We denote
by [R., R the cross commutator of R, and R,,, that is, [R,, R}] = R, R} —
R: R.. In [8], Mandrekar proved that [R,, R} ] = 0 if and only if M is Beurling
type, that is, M = ¢H? for some inner function ¢ on I'2. This is a nice
characterization of Beurling type invariant subspaces of H2. More generally,
in [4] the authors proved that [R., R} ] = 0 if and only if [Ry, (2), R}, )] =0
for nonconstant functions 1 (z), 9 (w) € H>(T).

We define the operator Sy on N by Sy f = Py(¢f) for f € N. Then we
have S, = S and SI = T7|y. In [6], it is proved that [S., S;] = 0 if and only
if N has one of the following forms;

- N=H?>cq(2)H?,
- N =H?© q(w)H?,
- N=(H?6q(2)H?) N (H? & g2(w)H?)
for nonconstant one variable inner functions ¢ (z) and gz (w). In [7], it is shown
that the condition [S,2, S} ] = 0 does not imply [S;, S}] = 0. In [5], the authors
proved that for n > 2, [S.»,S%] = 0 if and only if one of the following conditions
holds;
(i) [S:, 851 =0,
(11) SZ"SZ) = 0,
(iii) there exists a Blaschke product b(z) with

Z— 0y
b(z) = 1:[ - 0 <|aj| <1,
j=1
where o; # o for every ¢,j with ¢ # j and of = af = --- = o such
that N C H? © b(2)H?.
In [7, Theorem 2.2], it is proved that (ii) holds if and only if either N C H?(T,)
or N C H2© z"H?. If N C H?(T,), then we have [S,,S}] = 0. Moreover,
in [5] it is proved that if [S,»,S5] = 0 and [S, S} # 0, then M N H>(T,) =
0(z)H>(T,) for an inner function #(z), and 2" € C + 6(z)H>°(T,). In this
case, we have S,» = ¢l for some ¢ € C.
The purpose of this paper is to generalize the above phenomeron. Let
¢(z) € H*(I'.) be a nonconstant function. Suppose that [S,), 5] = 0 and
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[S.,S%] # 0. In Section 2, we prove that MNH>(T',) # {0} and MNH?(T',) #

z w

H?(T',). Hence by the Beurling theorem, M N H?(T',) = 6(z)H?(T',) for a non-
constant inner function (z). Thus we get 0(z)H? C M. Write

My =M S 0(z)H?.

We prove that My # {0} and T3 )My C Mg. In another word, p(2)N C

N @ 6(z)H? holds. In Section 3, we study on the one variable Hardy space
H?(T.). Let N1, N5 be backward shift invariant subspaces of H?(T',) satisfying
{0} # Ny & Ny # H?(T,). Tt is proved that p(z)Na C No & (H*(T;) © Ny) if
and only if ¢(z) € C+ (H?(I',)© Ni). As applications of these facts, in Section
4 we prove that p(z) € C+0(2)H>°(I',) and S, = ¢l for some c € C.

2. Equivalent conditions for [S,(.), S}] =0

Let N be a backward shift invariant subspace of H? with N # {0} and N #
H?, and let p(z) € H**(T',) be a nonconstant function. We write operators T,
and T} on H?> = M & N in the matrix forms as

M

(= PuT,|n N * 0 2 _

Let
A= PyT,|n and B =PnNT;|m-
Since T, Ty = TiT, on H?, we have
SySy =BA+S;S,.
Hence we get the following.
Lemma 2.1. [S,,S;] =0 if and only if BA=0.
It is not difficult to see that
kerB = {feM:T,feM}
= {feMowM:T,f=0}dwM
= (MNHYT.)) ®wM
and
rangeA =M oker A" =Mo{feM:T;fe M}
Then by Lemma 2.1, we have the following.
Lemma 2.2. [S,,S;] =0 if and only if
Mo{feM:TifeM}c (MnNHXT,)) ®wM.

Lemma 2.3. If [S,,S:] =0 and [S;, S;] # 0, then MNH?(T';) is a nontrivial
invariant subspace of H*(T).
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Proof. Since M # H?, trivially M N H*(T',) # H?(T',) holds. Suppose that
M N H?(T,) = {0}. By Lemma 2.2,

Mo{feM:T,;fe M} CwM.

Hence

MowMcC{feM:T,fe M}
Since T, T;; = T, Ty, on H? if f € M and T;f € M, then T (w" f) = w" Ty f €
M for every n > 0, so that by the above we get

w"(MowM)C{feM:T,fe M}

Therefore
M=> aeuw"(MewM)C{feM:T;feM}
n=0
Thus we get T;M C M. This shows that ¢(2)N C N.
Let

A={y(z) e H*(,) : YN C N}.
Then both functions 1 and ¢(z) are contained in A. For ¢ € A and h € N, we
have

N3 TZ(¢h) = (T29)h +(0)TZh.
Hence (T7¢)N C N, so that TX A C A. It is easy to see that A is a weak-*
closed subalgebra of H>°(T',). Let

2m
L= {f(z) c H\(T,): f () (ei) % =0 for every ¥(z) € .A}.
0

Then L is a closed subspace of H'(I',). Since TYA C A and 1 € A, we have
zL C L.

Suppose that L # {0}. By the Beurling theorem, L = q(z)H*(T',) for an
inner function ¢(z). Since 1 € A, ¢(0) = 0. Hence zZ¢(z) € H>*(I',). Since
p(z)" € Aforn >1,

o no o
[ e atee@ e ne) 51 = [ aehepen” 5L =0
0 0

for every h(z) € H'(I';). Hence Eq(z)mn € H>*(T,) for every n > 1. By
the Schneider theorem [11], we have ¢(z) € H*(T';). This shows that ¢(z) is
constant. Since we assumed that ¢(z) is nonconstant, this is a contradiction.
Therefore L = {0}. Hence A = H>*(T',). Especially, we have z € A and
zN C N. Then T,|y = S.. Since T|y = Si and T,T} = TT, on H?, we
have S, = S%S,. This is a desired contradiction. g

b _
or

In the rest of this section, we assume that MNH?(T',) # {0}. Since M # H?,
M NH?*T,) # H*T,). By the Beurling theorem,

M N H*(T,)=0(z)H*T,)
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for some nonconstant inner function §(z). Hence 0(z)H? C M. Write
Mg =M © 0(z)H?.
Then
M = My @ 0(z)H> and H?S0(2)H?> = My S N.
By the definition of My, we have wMy C My and My N H?(T',) = {0}. Note
that if [S,, S5] = 0 and [S.,S}] # 0, then My # {0}. For, if My = {0}, then
M = 0(z)H? and N = H? © 6(z)H?. Then we have [S,,S}] = 0, see [6], and
this is a contradiction.
Lemma 2.4. Let f € My. Then T, f € My if and only if f € wMy.
Proof. Suppose that T} f € My. Then
f- f(z70) € wMy C Mp.
Since f € My, f(2,0) € My. Since My N H*(T',) = {0}, f(2,0) = 0. Hence

f € wMy. The converse is trivial. O

Let P be the orthogonal projection from H? onto H? & 6(z)H?, and Q, be
the operator on H? & 0(z)H? defined by Q,f = Py(¢f) for f € H* ©0(2)H?.
We can write both operators Q, and Ty |(g2com2) as

M
_ * PM9T<P|N 2 2 _
Qe = ( 0 S, on H?60(z)H? = ;1\97
and
My
* * 0
Tyl (m2com2) = < PaT v S ) on H?00(z)H* = ;1\9[
Let

Ag = Py, Ty|n and By = PnT|um,-
Lemma 2.5. [S,,S;] =0 if and only if BgAg = 0.
Proof. Let f € H*©0(2)H? = Mp®N. We have T (p(2) f) = ¢(2)T f. Write
0(2)f=Quf® fr e (Mg® N) ®0(2)H

Since T f1 € 0(2)H? and T3(Quf) L 0(2)H?, we get T:Quf = QuT5f.
Thus Q,1,; = T;;Q, on Mg & N. Similarly as Lemma 2.1, we can prove the
assertion. O

The following is a slight generalization of [7, Theorem 4.4].

Theorem 2.6. The following conditions are equivalent;
(i) [Se,Su] =0,
(ii) My & {f € My : T;f S Mg} C wMpy,
(iil) Ty My C My,
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(iv) @(2)N C N @ 0(z)H>.
Proof. By Lemma 2.4,
ker By ={f € My : T f € My} = wMp.
Also we have
range Ag = My © ker A} =My {feMy:T,f € My}

Hence by Lemma 2.5, we get (i) < (ii).
If (ii) holds, then

Mo ©wMy C{f € Mpy:T,f € Mg}
Hence for each n > 0, we have
T;(Z)w"(M.g O wMy) = w"T;(z)(Mg O wMpy) C w" My C M.
Since

My = Z @wn(Mg S} wMg),
n=0
we have T; My C Mp. Thus we get (iii).
(iif) = (i) is trivial.
It is not difficult to see that (iii) < (iv). O
Suppose that [S,, S;] =0 and [S.,S}] # 0. Then we proved that
0(2)H> S M and o(2)(H*©M)C (H>©M)®0(z)H>.

Note that 0(z)H? and M are invariant subspaces of H?. Now we fix an inner
function 0(z). Here we have a question for which ¢(z) € H>®(T',) satisfies the
above condition. In the next section, we study a similar question in the one
variable Hardy space H2(T',). In Section 4, we revisit on this question.

3. A theorem on the unit circle

In this section, we prove the following theorem.

Theorem 3.1. Let Ny, Ny be backward shift invariant subspaces of H?(T,)
with 0 # Ny G N1 # H?*(T'.), and ¢(z) € N1. Then

e(NoNH>®(T,)) C Na & (H*(T',) © Ny)
if and only if ¢(z) = cPn,1 for some ¢ € C. In this case, if we define the
operator S, on Ny by S f = P, (¢f) for f € Ny, then S, = cl.

To prove the theorem, we need two lemmas which are not difficult to show.

Lemma 3.2. Let N be a backward shift invariant subspace of H*(T,). Then
NNH>(T,) is dense in N.

Lemma 3.3. Let N be a backward shift invariant subspace of H?(T,) with
N # {0} and N # H*(T,). If ¢ € H?(T',) is a nonconstant function, then
o(NAH=(T)) ¢ N.
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Proof of Theorem 3.1. By the Beurling theorem,
H*T,)© N, = 0H*(T.)
for some nonconstant inner function 6.
First, suppose that
p(N2 NH*(T:)) € No @ (H*(I.) © Ny).

Since Ny # {0}, by Lemma 3.2 there exists hy € No N H>®(T',) with h;(0) = 1.
Write

(3.1) phi = f1®0g € No&® (H*(I.) & N1) = No @ 0H?(T,).
Also for each h € No N H*(T',), we can write
(3.2) oh=f®0g€ Ny ®OH*(T,).
When h(0) = 0, we shall prove that
(3.3) g(0) =0.
Since

T (ph) = ¢TZh + h(0)T o = T h,
by (3.2) we have
Tih = TI(ph)=T(f+0g)
T f+0T g+ g(0)T>0
= (TZf +9(0)T70) + 617 g.

Note that T)h € NoNH>®(T,) and T f +¢(0)T76 L H?(T',). By the assump-
tion, ¢Th € No ® 0H?(T,). Hence

T:f + g(0)T70 € Ny.

Since Ty f € Na, g(0)T}0 € Na. To prove (3.3), suppose that g(0) # 0. Then
T70 € Ny. Let N be a backward shift invariant subspace generated by 776.
Since N; = H?(',) © OH?(T',), we have N = Nj. Since T/0 € Ny, N C Ns.
This contradicts N2 & Ny. Therefore g(0) = 0. Thus we get (3.3).

By (3.1) and (3.2),

¢(h = h(0)h1) = (f = 1(0)f1) © (g — h(0)g1) € N2 ® OH*(T>).
Since (h — h(0)h1)(0) =0, by (3.3) we get
(3.4) 9(0) = h(0)g1(0).
By (3.2) again,
T h+h(0)T o = T (ph) = (T f + 9(0)T;0) + 0T g,
so that
eI h = (—h(0)TF o+ TS f 4 g(0)T70) & 0T g.
Since Th € No N H*(T,) and ¢ L @H?(T,), by the assumption we have
Ch(O)TE @+ T2 f + g(0)T70 € No.
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Similarly we have
o120 = (= (TR)O)Tr e — 0T+ T2 + g(0)T:20
+(T29)(0)T:6) @ 0T:%.

Repeating the same argument, we get

e = [ (8 ooy oz
7=0

n—1

(Z (T279) ()T 0)| @ 0127,

5=0
Since h € No N H>(T',), T;™h € Na N H>®(T',). Hence by (3.2) and (3.4),
(T779)(0) = (T7"h)(0)g1(0)
for every n > 0. This shows that g = g1(0)h. By (3.2), we obtain
(0 = 91(0)0)h = f € N>

for every h € No N H*®(I';). By Lemma 3.3, ¢ — ¢1(0)6 is constant. Write
© —¢1(0)8 = ¢. Since p € Ny, we have p = cPy;, 1.
Next, suppose that ¢ = cPn,1. Then

© = c¢Py,1=c(1—6(0)8).
Hence for f € Ny N H*(I',), we have
of =cf —cB(0)0f € Ny ® OH?(T,).
Thus we get ¢(No N H>(I.)) C No @ (H2(T',) © Nq). O

Corollary 3.4. Let Ny, Ny be backward shift invariant subspaces of H*(T.)
with {0} # Ny & Ny # H?(T.), and ¢(z) € L>(T.). Define the operator S,
on Ny by Syh = Pn, (¢h) for h € Ni. Then S,No C Ny if and only if

9 € C+HY,): + (HXT,)© Ny) = H2(T,) + (H*(T',) © Ny).
Proof. Write H*(T',) © Ny = 0H?(T",) for some inner function 6. Let
P =1 © s B lpz € H(T.)" @ Ny @ 0H?(T,).
It is easy to see that
Pr, (p1(N2 N H™(T'.))) C N,

and
Py, (8p3(No N H*(T2))) = {0}.
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Hence S, Ny C N, if and only if Py, ((pg(Ng N H‘X’(Fz))) C Ns. By Theorem
3.1, S, No C Ny if and only if

¢ = p1+cPy1+0p3

w1 +c(l— (0)9)194%

p1+ ¢+ 0(p3 — c0(0)).
This completes the proof. (I

The following corollaries follow from Corollary 3.4 directly.

Corollary 3.5. Let Ny, Ny be backward shift invariant subspaces of H*(T.)
with {0} # Ny G Ny # H?*(T.), and p(z) € H*(I',). Then ¢No C Ny @
(H?(T',) © N1) if and only if p € C+ (H*(T',) © N1).

Corollary 3.6. Let Ny, No be backward shift invariant subspaces of H*(T.)
with {0} # Ny C Ny # H?(T,), and p(z) € H*(T,). If opNa C No@®(H?*(T,)O
Ny), then Ny = Na if and only if ¢ ¢ C + (H*(T',) © Ny).

Corollary 3.7. Let My, My be invariant subspaces of H*(T'.) with {0} # My G
My # H%(T,), and p(z) € H*®(T,). Then Ty (My © My) C My © M,y if and
only if p € C+ M;.

Corollary 3.8. Let My, My be invariant subspaces of H*(L',) with {0} # My
M, C H*(I.), and o(z) € H®(T.). If T;(My & My) C My © My, then
© & C+ M if and only if My = H*(T,).

4. The main theorem

As applications of the results in Sections 2 and 3, we prove the following.

Theorem 4.1. Let N be a backward shift invariant subspace of H? with N #
{0} and N # H?. Let p(z) € H*(T',) be a nonconstant function. If Sy, Sk] =
0 and [S,,S%] # 0, then p(z) —c€ MNH>(T,) for somec e C and S, = cl.

Proof. By Lemma 2.3, M N H*(T,) = 6(z)H?*(T,) for a nonconstant inner
function (z). Since 0(z)H? C M, as in Section 2 we write

(4.1) My =M c 6(z)H?.

Since [Sy, Sk] # 0, we have My # {0}. By Theorem 2.6,
(4.2) ©(2)N C N @ 6(2)H?

and

(4.3) T, Mg C M.

To prove the assertion, we assume that

(4.4) $(2) — ¢ ¢ 0(z)H™(T.)

for every ¢ € C. We shall prove that [S,,S] = 0. This will be a desired
contradiction. We consider two cases #(0) = 0 and 6(0) # 0 separately.
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Case 1. Suppose that 8(0) = 0. If 8(z) = cz for some constant ¢ with |c| = 1,
then it is easy to see that
M = 0(2)H? + q(w)H?

for either a nonconstant inner function g(w) or ¢(w) = 0. In this case, by [6]
we have [S;, S| = 0. So, we may assume that 0(z) = z6,(z) for a nonconstant
inner function #(z). Then

(4.5) H?©0(z)H* = H*(I'y,) @ 2(H? © 6,(2)H?).
We divide the proof into two subcases.

Subcase 1.1. Assume that 6;(z)My C 6(z)H?. Then My C zH?. Hence
H?(T',,) C N. For each nonnegative integer n, let

L, ={f(2) € H*(I'.) ©0(z)H*(,) : w" f(z) € N}.
Then 1 € L, L, is a nonzero closed subspace of H2(I',) © 0(z)H*(T,), and
T*L, C Ly. By (4.2),
w™p(2) Ly, C p(2)N C N @ 0(2)H?,
so we have
@(2) Ly, C Ly, @ 0(2)H*(T,).
By (4.4) and Corollary 3.6, L,, = H*(T',) © 6(2)H?(T',). Hence
w"(H*(T.) ©0(z)H*(I'.)) C N
for every n > 0. Therefore

H?*c0(2)H? = i ew" (H*(T,) ©0(z)H*(I'.)) C N.

n=0

By (4.1), H*60(2)H? = My® N, so that My = {0}. This contradicts [S,, S| #
0.

Subcase 1.2. Assume that 01(2)My ¢ 0(2)H?. By (4.5), for every g € My
we can write

(4.6) g = fo(w) & zhy(z,w),
where f, € H*(I'y,) and h, € H? © 01(2)H?. Since 61(z)My C M, we have
01(2)g = 01(2) fo(w) ® 201(2)hg(z,w) € M = My ® 0(2)H?,

so that 61 (2) fg(w) € My. Since 61 (z)My ¢ 6(z)H?, fy(w) # 0 for some g € M.
Then {f,(w) : g € Mg} # {0}. Since wMy C My, by (4.6) {fy(w): g € Mp}
is a nonzero T),-invariant subspace of H?(I',,). Hence there is a one variable
inner function ¢(w) such that

(4.7) q(w)H*(Ty) = {fy(w) : g € My}
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Since 61 (2){fy(w) : g € My} C My, we have
(4.8) 01(2)q(w)H?(T,,) C M.
If g(w) is constant, then 6 (z) € My and
0(z)H*(L.) S C-61(2) +0(2)H*(L.) € M N H*(T.),

so that 6(2)H?(T',) # M N H?(I',). This is a contradiction. Hence g(w) is
nonconstant. By (4.6) and (4.7), we get

(4.9) (H*(Tw) © q(w)H*(T'y,)) L M.
For each nonnegative integer n, let
Ly, ={f(z) € H*(L.) ©0(z)H*(L.) : f(2)w"q(w) € Mp}.
By (4.8), 01(2) € L,. Since zMy C My @ 0(2)H?, L,, ® 0(2)H?*(T,) is an
invariant subspace of H*(T';). By (4.3), we have TL,, C L,. By (4.4) and
Corollary 3.8, L,, = H%(T',) © 0(z)H?(T',). Hence
w"q(w)(HQ(Fz) e G(Z)HQ(FZ)) C My
for every n > 0. Thus we get
(4.10) q(w)(H? ©60(2)H?) C M.

By (4.9), H*(T'y)oq(w)H?*(T,) C N. For each ¢(w) € H?(T',,)Oq(w)H?(T,,),

let
Ly = {f(z) € H*(.) © 0(x)H*(T2) : f(2)t(w) € N}.
Then 1 € Ly, and in the same way as Subcase 1.1, Ly is a nonzero closed
subspace of H*(I',) © 6(z)H?*(T';) such that T7 Ly C Ly and ¢(2)Ly C Ly &
0(z)H?(T',). Hence by (4.4) and Corollary 3.6, Ly, = H?(T,) © 6(z)H?(L,).
Therefore
P(w)(H*(T.) ©0(2)H*(T.)) € N
for every (w) € H*(T,) © q(w)H?*(T,), and hence
(4.11) (H? ©0(2)H?) © q(w)(H? ©6(2)H?) C N.
Since H? © 0(2)H? = My ® N, by (4.10) and (4.11) we get
N = (H?©0(2)H?) & q(w)(H? & 0(2)H?).

By [6], this shows that [S,,S5] =0

) w

Case 2. Suppose that 6(0) # 0. Let ¢'(2) = ¢(z) — (p,0)0(z). Then
S, = Sy, s0 that we may assume that ¢ L 6. Write
(4.12) p(2) = ¢1(2) + 0(2)2p2(2),

where 1 € H*(I',) © 0H?*(T,) and @2 € H*(T,). By (4.4), ¢1(2) # 0. Since
6(0) #0, TXp1(2) # 0. For each h € N, by (4.2) we can write

oh = fn+0g, € N®OH.
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Applying T for the both side of the above, we have
OT7h+ h(0,w)T o =T, fn + g(0,w)T70 + 0T gp.

Hence by (4.12),

eI’h = —h0,w)T e+ 17 frn+ gn(0,w)T70+ 0T gy,

—h(0,w)T o1 +T7 fr + gn(0, w)T70 + 0(T; gn — h(0, w)epa).
Note that
—h(0,w)T o1 + T2 o+ gn(0,w)T50 L 0H?.
Since h € N, we have T h € N, so that by (4.2) we have
—h(0,w)T}p1 + T fr. + gn(0,w)T;60 € N.

Since fn, € N, also we have T f;, € N and

(4.13) —h(0,w)T7 1 + gn(0,w)T70 € N.
Write
0(z) = 62(2) — 0(0)0(z).
We have
Tge—zm) T = Tg?-a(o)e =Ts.
Since

T o—oy N C N,
—h(0,w)(T5er + aTs0) + g(0,w)T560 € N.
Since ¢1 € N C H? 5 0H?, we have T = 0. Since T30 = —6(0), we get

af(0)h(0,w) — 6(0)g(0,w) € N.

Since 6(0) # 0,

ah(0,w) — g(0,w) € N.
Thus we get

ah(0,w) — g(0,w) L 6(z)H?.

Because 0(0) # 0, we have ah(0,w) — g(0,w) = 0. Hence by (4.9),

—h(0,w)Tp1(2) € N.
Note that T} ¢1(z) # 0. In the same way as Subcase 1.2,

h(0,w)(H*(T'.) © 6(2)H*(T'.)) C N C H* © 6(z)H?
for every h € N. Since T)N C N and N # {0}, {h(0,w):h€ N} is a
nontrivial T7*-invariant subspace of H?(T',,), so that
{h(0,w) : h € N} = H*(T'y) © q(w)H*(Ty,)

for either nontrivial inner function ¢(w) or g(w) = 0. Hence

(H? S 0(2)H?) © q(w)(H* © 0(2)H?) C N.
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For every f € N, write
o)
f= Z D frn(w)z".
n=0

Since TYN C N, fn(w) € H*(T'y) © q(w)H?(T,,) for every n > 0. Hence
N C (H*©0(2)H?) © q(w)(H* © 0(2)H?).
Therefore
N = (H?*©0()H?) © q(w)(H* © 0(2)H?).
This shows that [S,, S}] = 0. This completes the proof. O
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