CROSS COMMUTATORS ON BACKWARD SHIFT INVARIANT SUBSPACES OVER THE BIDISK II

KEI JI IZUCHI AND KOU HEI IZUCHI

ABSTRACT. In the previous paper, we gave a characterization of backward shift invariant subspaces of the Hardy space over the bidisk on which $[S_{z^n}, S_w^*] = 0$ for a positive integer $n \geq 2$. In this case, it holds that $S_{z^n} = cI$ for some $c \in \mathbb{C}$. In this paper, it is proved that if $[S_{\varphi}, S_w^*] = 0$ and $\varphi \in H^{\infty}(\Gamma_z)$, then $S_{\varphi} = cI$ for some $c \in \mathbb{C}$.

1. Introduction

Let Γ^2 be the 2-dimensional unit torus. We write $(z,w)=(e^{is},e^{it})$ for variables in $\Gamma^2=\Gamma_z\times\Gamma_w$. Let $L^2=L^2(\Gamma^2)$ be the usual Lebesgue space on Γ^2 with the norm

$$||f||_2 = \left(\int_0^{2\pi} \int_0^{2\pi} |f(e^{is}, e^{it})|^2 \frac{dsdt}{(2\pi)^2}\right)^{1/2}.$$

With the usual inner product, L^2 is a Hilbert space. Let $H^2 = H^2(\Gamma^2)$ be the Hardy space over Γ^2 . We denote by $H^2(\Gamma_z)$ and $H^2(\Gamma_w)$ the Hardy spaces on the unit circle Γ in variables z and w, respectively. We think of $H^2(\Gamma_z)$ and $H^2(\Gamma_w)$ as closed subspaces H^2 . For each $f \in H^2$, we can write f as

$$f = \sum_{i=0}^{\infty} \oplus f_i(w) z^i, \qquad f_i(w) \in H^2(\Gamma_w).$$

Let P be the orthogonal projection from L^2 onto H^2 . For a closed subspace M of L^2 , we denote by P_M the orthogonal projection from L^2 onto M. For a function $\psi \in L^{\infty}$, the Toeplitz operator T_{ψ} on H^2 is defined by $T_{\psi}f = P(\psi f)$ for $f \in H^2$. It is well known that $T_{\psi}^* = T_{\overline{\psi}}$, and $T_{\varphi(z)}^* T_{\psi(w)} = T_{\psi(w)} T_{\varphi(z)}^*$ for every $\varphi(z) \in H^{\infty}(\Gamma_z)$ and $\psi(w) \in H^{\infty}(\Gamma_w)$. A function $f \in H^2$ is called inner if |f| = 1 on Γ^2 almost everywhere. A nonzero closed subspace M of H^2 is

Received September 20, 2010; Revised December 17, 2010.

²⁰¹⁰ Mathematics Subject Classification. Primary 47A15, 32A35; Secondary 47B35.

 $Key\ words\ and\ phrases.$ backward shift invariant subspace, invariant subspace, Hardy space, cross commutator.

The first author is partially supported by Grant-in-Aid for Scientific Research (No.16340037), Japan Society for the Promotion of Science.

called invariant if $zM \subset M$ and $wM \subset M$. In one variable case, the well known Beurling theorem [2] says that an invariant subspace M of $H^2(\Gamma_z)$ has a form $M = q(z)H^2(\Gamma_z)$, where q(z) is an inner function. In two variable case, the structure of invariant subspaces of H^2 is extremely complicated, see [3, 10].

Let M be an invariant subspace of H^2 with $M \neq \{0\}$ and $M \neq H^2$. Then $T_z^*(H^2 \ominus M) \subset H^2 \ominus M$ and $T_w^*(H^2 \ominus M) \subset H^2 \ominus M$. In this paper, we write

$$N = H^2 \ominus M$$
.

Usually, N is called a backward shift invariant subspace of H^2 . See [1, 9] for studies of backward shift invariant subspaces over the unit circle Γ .

For a function $\psi \in L^{\infty}$, we denote by R_{ψ} the operator on M defined by $R_{\psi}f = P_M(\psi f)$ for $f \in M$. It holds $R_{\psi}^* = R_{\overline{\psi}}$ and $R_z = T_z|_M$. We denote by $[R_z, R_w^*]$ the cross commutator of R_z and R_w , that is, $[R_z, R_w^*] = R_z R_w^* R_w^*R_z$. In [8], Mandrekar proved that $[R_z, R_w^*] = 0$ if and only if M is Beurling type, that is, $M = qH^2$ for some inner function q on Γ^2 . This is a nice characterization of Beurling type invariant subspaces of H^2 . More generally, in [4] the authors proved that $[R_z, R_w^*] = 0$ if and only if $[R_{\psi_1(z)}, R_{\psi_2(w)}^*] = 0$ for nonconstant functions $\psi_1(z), \psi_2(w) \in H^{\infty}(\Gamma)$.

We define the operator S_{ψ} on N by $S_{\psi}f = P_N(\psi f)$ for $f \in N$. Then we have $S_{\psi}^* = S_{\overline{\psi}}$ and $S_z^* = T_z^*|_N$. In [6], it is proved that $[S_z, S_w^*] = 0$ if and only if N has one of the following forms;

- $\begin{array}{l} \cdot \ N = H^2 \ominus q_1(z)H^2, \\ \cdot \ N = H^2 \ominus q_2(w)H^2, \\ \cdot \ N = (H^2 \ominus q_1(z)H^2) \cap (H^2 \ominus q_2(w)H^2) \end{array}$

for nonconstant one variable inner functions $q_1(z)$ and $q_2(w)$. In [7], it is shown that the condition $[S_{z^2}, S_w^*] = 0$ does not imply $[S_z, S_w^*] = 0$. In [5], the authors proved that for $n \geq 2$, $[S_{z^n}, S_w^*] = 0$ if and only if one of the following conditions holds;

- (i) $[S_z, S_w^*] = 0$,
- (ii) $S_{z^n} S_w^* = 0$,
- (iii) there exists a Blaschke product b(z) with

$$b(z) = \prod_{j=1}^{n} \frac{z - \alpha_j}{1 - \overline{\alpha}_j z}, \quad 0 < |\alpha_j| < 1,$$

where $\alpha_i \neq \alpha_j$ for every i, j with $i \neq j$ and $\alpha_1^n = \alpha_2^n = \cdots = \alpha_n^n$ such that $N \subset H^2 \ominus b(z)H^2$.

In [7, Theorem 2.2], it is proved that (ii) holds if and only if either $N \subset H^2(\Gamma_z)$ or $N \subset H^2 \oplus z^n H^2$. If $N \subset H^2(\Gamma_z)$, then we have $[S_z, S_w^*] = 0$. Moreover, in [5] it is proved that if $[S_{z^n}, S_w^*] = 0$ and $[S_z, S_w^*] \neq 0$, then $M \cap H^{\infty}(\Gamma_z) =$ $\theta(z)H^{\infty}(\Gamma_z)$ for an inner function $\theta(z)$, and $z^n \in \mathbb{C} + \theta(z)H^{\infty}(\Gamma_z)$. In this case, we have $S_{z^n} = cI$ for some $c \in \mathbb{C}$.

The purpose of this paper is to generalize the above phenomeron. Let $\varphi(z) \in H^{\infty}(\Gamma_z)$ be a nonconstant function. Suppose that $[S_{\varphi(z)}, S_w^*] = 0$ and $[S_z, S_w^*] \neq 0$. In Section 2, we prove that $M \cap H^\infty(\Gamma_z) \neq \{0\}$ and $M \cap H^2(\Gamma_z) \neq H^2(\Gamma_z)$. Hence by the Beurling theorem, $M \cap H^2(\Gamma_z) = \theta(z)H^2(\Gamma_z)$ for a nonconstant inner function $\theta(z)$. Thus we get $\theta(z)H^2 \subset M$. Write

$$M_{\theta} = M \ominus \theta(z)H^2$$
.

We prove that $M_{\theta} \neq \{0\}$ and $T_{\varphi(z)}^*M_{\theta} \subset M_{\theta}$. In another word, $\varphi(z)N \subset N \oplus \theta(z)H^2$ holds. In Section 3, we study on the one variable Hardy space $H^2(\Gamma_z)$. Let N_1, N_2 be backward shift invariant subspaces of $H^2(\Gamma_z)$ satisfying $\{0\} \neq N_2 \subsetneq N_1 \neq H^2(\Gamma_z)$. It is proved that $\varphi(z)N_2 \subset N_2 \oplus (H^2(\Gamma_z) \oplus N_1)$ if and only if $\varphi(z) \in \mathbb{C} + (H^2(\Gamma_z) \oplus N_1)$. As applications of these facts, in Section 4 we prove that $\varphi(z) \in \mathbb{C} + \theta(z)H^{\infty}(\Gamma_z)$ and $S_{\varphi} = cI$ for some $c \in \mathbb{C}$.

2. Equivalent conditions for $[S_{\varphi(z)}, S_w^*] = 0$

Let N be a backward shift invariant subspace of H^2 with $N \neq \{0\}$ and $N \neq H^2$, and let $\varphi(z) \in H^{\infty}(\Gamma_z)$ be a nonconstant function. We write operators T_{φ} and T_w^* on $H^2 = M \oplus N$ in the matrix forms as

$$T_{\varphi} = \left(\begin{array}{cc} * & P_{M}T_{\varphi}|_{N} \\ 0 & S_{\varphi} \end{array} \right), \ T_{w}^{*} = \left(\begin{array}{cc} * & 0 \\ P_{N}T_{w}^{*}|_{M} & S_{w}^{*} \end{array} \right) \quad \text{on } H^{2} = \left(\begin{array}{cc} M \\ \oplus \\ N \end{array} \right).$$

Let

$$A = P_M T_{\varphi}|_N$$
 and $B = P_N T_w^*|_M$.

Since $T_{\varphi}T_{w}^{*} = T_{w}^{*}T_{\varphi}$ on H^{2} , we have

$$S_{\varphi}S_w^* = BA + S_w^*S_{\varphi}.$$

Hence we get the following.

Lemma 2.1. $[S_{\varphi}, S_{w}^{*}] = 0$ if and only if BA = 0.

It is not difficult to see that

$$\begin{aligned} \ker B &=& \{f \in M : T_w^* f \in M\} \\ &=& \{f \in M \ominus wM : T_w^* f = 0\} \oplus wM \\ &=& \left(M \cap H^2(\Gamma_z)\right) \oplus wM \end{aligned}$$

and

$$\overline{\mathrm{range}\,A} = M \ominus \ker A^* = M \ominus \{f \in M : T_{\varphi}^* f \in M\}.$$

Then by Lemma 2.1, we have the following.

Lemma 2.2. $[S_{\varphi}, S_w^*] = 0$ if and only if

$$M \ominus \{ f \in M : T_{\varphi}^* f \in M \} \subset (M \cap H^2(\Gamma_z)) \oplus wM.$$

Lemma 2.3. If $[S_{\varphi}, S_w^*] = 0$ and $[S_z, S_w^*] \neq 0$, then $M \cap H^2(\Gamma_z)$ is a nontrivial invariant subspace of $H^2(\Gamma_z)$.

Proof. Since $M \neq H^2$, trivially $M \cap H^2(\Gamma_z) \neq H^2(\Gamma_z)$ holds. Suppose that $M \cap H^2(\Gamma_z) = \{0\}$. By Lemma 2.2,

$$M \ominus \{ f \in M : T_{\varphi}^* f \in M \} \subset wM.$$

Hence

$$M \ominus wM \subset \{f \in M : T_{\omega}^* f \in M\}.$$

Since $T_w T_\varphi^* = T_\varphi^* T_w$ on H^2 , if $f \in M$ and $T_\varphi^* f \in M$, then $T_\varphi^* (w^n f) = w^n T_\varphi^* f \in M$ for every $n \geq 0$, so that by the above we get

$$w^n(M \ominus wM) \subset \{f \in M : T_{co}^* f \in M\}.$$

Therefore

$$M = \sum_{n=0}^{\infty} \oplus w^n(M \ominus wM) \subset \{ f \in M : T_{\varphi}^* f \in M \}.$$

Thus we get $T_{\varphi}^*M\subset M.$ This shows that $\varphi(z)N\subset N.$ Let

$$\mathcal{A} = \{ \psi(z) \in H^{\infty}(\Gamma_z) : \psi N \subset N \}.$$

Then both functions 1 and $\varphi(z)$ are contained in \mathcal{A} . For $\psi \in \mathcal{A}$ and $h \in \mathbb{N}$, we have

$$N \ni T_z^*(\psi h) = (T_z^*\psi)h + \psi(0)T_z^*h.$$

Hence $(T_z^*\psi)N\subset N$, so that $T_z^*\mathcal{A}\subset \mathcal{A}$. It is easy to see that \mathcal{A} is a weak-*closed subalgebra of $H^{\infty}(\Gamma_z)$. Let

$$L = \left\{ f(z) \in H^1(\Gamma_z) : \int_0^{2\pi} f(e^{i\theta}) \overline{\psi(e^{i\theta})} \, \frac{d\theta}{2\pi} = 0 \text{ for every } \psi(z) \in \mathcal{A} \right\}.$$

Then L is a closed subspace of $H^1(\Gamma_z)$. Since $T_z^* \mathcal{A} \subset \mathcal{A}$ and $1 \in \mathcal{A}$, we have $zL \subset L$.

Suppose that $L \neq \{0\}$. By the Beurling theorem, $L = q(z)H^1(\Gamma_z)$ for an inner function q(z). Since $1 \in \mathcal{A}$, q(0) = 0. Hence $\overline{z}q(z) \in H^{\infty}(\Gamma_z)$. Since $\varphi(z)^n \in \mathcal{A}$ for $n \geq 1$,

$$\int_0^{2\pi} e^{-i\theta} q(e^{i\theta}) \overline{\varphi(e^{i\theta})}^n e^{i\theta} h(e^{i\theta}) \frac{d\theta}{2\pi} = \int_0^{2\pi} q(e^{i\theta}) h(e^{i\theta}) \overline{\varphi(e^{i\theta})}^n \frac{d\theta}{2\pi} = 0$$

for every $h(z) \in H^1(\Gamma_z)$. Hence $\overline{z}q(z)\overline{\varphi(z)}^n \in H^\infty(\Gamma_z)$ for every $n \geq 1$. By the Schneider theorem [11], we have $\overline{\varphi(z)} \in H^\infty(\Gamma_z)$. This shows that $\varphi(z)$ is constant. Since we assumed that $\varphi(z)$ is nonconstant, this is a contradiction. Therefore $L = \{0\}$. Hence $\mathcal{A} = H^\infty(\Gamma_z)$. Especially, we have $z \in \mathcal{A}$ and $zN \subset N$. Then $T_z|_N = S_z$. Since $T_w^*|_N = S_w^*$ and $T_zT_w^* = T_w^*T_z$ on H^2 , we have $S_zS_w^* = S_w^*S_z$. This is a desired contradiction.

In the rest of this section, we assume that $M \cap H^2(\Gamma_z) \neq \{0\}$. Since $M \neq H^2$, $M \cap H^2(\Gamma_z) \neq H^2(\Gamma_z)$. By the Beurling theorem,

$$M \cap H^2(\Gamma_z) = \theta(z)H^2(\Gamma_z)$$

for some nonconstant inner function $\theta(z)$. Hence $\theta(z)H^2 \subset M$. Write

$$M_{\theta} = M \ominus \theta(z)H^2.$$

Then

$$M = M_{\theta} \oplus \theta(z)H^2$$
 and $H^2 \ominus \theta(z)H^2 = M_{\theta} \oplus N$.

By the definition of M_{θ} , we have $wM_{\theta} \subset M_{\theta}$ and $M_{\theta} \cap H^{2}(\Gamma_{z}) = \{0\}$. Note that if $[S_{\varphi}, S_{w}^{*}] = 0$ and $[S_{z}, S_{w}^{*}] \neq 0$, then $M_{\theta} \neq \{0\}$. For, if $M_{\theta} = \{0\}$, then $M = \theta(z)H^{2}$ and $N = H^{2} \ominus \theta(z)H^{2}$. Then we have $[S_{z}, S_{w}^{*}] = 0$, see [6], and this is a contradiction.

Lemma 2.4. Let $f \in M_{\theta}$. Then $T_w^* f \in M_{\theta}$ if and only if $f \in wM_{\theta}$.

Proof. Suppose that $T_w^* f \in M_\theta$. Then

$$f - f(z, 0) \in wM_{\theta} \subset M_{\theta}$$
.

Since $f \in M_{\theta}$, $f(z,0) \in M_{\theta}$. Since $M_{\theta} \cap H^2(\Gamma_z) = \{0\}$, f(z,0) = 0. Hence $f \in wM_{\theta}$. The converse is trivial.

Let P_{θ} be the orthogonal projection from H^2 onto $H^2 \ominus \theta(z)H^2$, and Q_{φ} be the operator on $H^2 \ominus \theta(z)H^2$ defined by $Q_{\varphi}f = P_{\theta}(\varphi f)$ for $f \in H^2 \ominus \theta(z)H^2$. We can write both operators Q_{φ} and $T_w^*|_{(H^2 \ominus \theta H^2)}$ as

$$Q_{\varphi} = \begin{pmatrix} * & P_{M_{\theta}} T_{\varphi}|_{N} \\ 0 & S_{\varphi} \end{pmatrix} \quad \text{on} \quad H^{2} \ominus \theta(z) H^{2} = \begin{pmatrix} M_{\theta} \\ \oplus \\ N \end{pmatrix}$$

and

$$T_w^*|_{(H^2\ominus\theta H^2)} = \left(\begin{array}{cc} * & 0 \\ P_N T_w^*|_{M_\theta} & S_w^* \end{array}\right) \quad \text{on} \quad H^2\ominus\theta(z)H^2 = \left(\begin{array}{c} M_\theta \\ \oplus \\ N \end{array}\right).$$

Let

$$A_{\theta} = P_{M_{\theta}} T_{\omega}|_{N}$$
 and $B_{\theta} = P_{N} T_{w}^{*}|_{M_{\theta}}$.

Lemma 2.5. $[S_{\varphi}, S_{w}^{*}] = 0$ if and only if $B_{\theta}A_{\theta} = 0$.

Proof. Let $f \in H^2 \oplus \theta(z)H^2 = M_\theta \oplus N$. We have $T_w^*(\varphi(z)f) = \varphi(z)T_w^*f$. Write $\varphi(z)f = Q_\omega f \oplus f_1 \in (M_\theta \oplus N) \oplus \theta(z)H^2$.

Since $T_w^*f_1 \in \theta(z)H^2$ and $T_w^*(Q_{\varphi}f) \perp \theta(z)H^2$, we get $T_w^*Q_{\varphi}f = Q_{\varphi}T_w^*f$. Thus $Q_{\varphi}T_w^* = T_w^*Q_{\varphi}$ on $M_{\theta} \oplus N$. Similarly as Lemma 2.1, we can prove the assertion.

The following is a slight generalization of [7, Theorem 4.4].

Theorem 2.6. The following conditions are equivalent;

- (i) $[S_{\varphi}, S_{w}^{*}] = 0$,
- (ii) $M_{\theta} \ominus \{ f \in M_{\theta} : T_{\varphi}^* f \in M_{\theta} \} \subset wM_{\theta},$
- (iii) $T_{\varphi}^* M_{\theta} \subset M_{\theta}$,

(iv)
$$\varphi(z)N \subset N \oplus \theta(z)H^2$$
.

Proof. By Lemma 2.4,

$$\ker B_{\theta} = \{ f \in M_{\theta} : T_w^* f \in M_{\theta} \} = w M_{\theta}.$$

Also we have

$$\overline{\mathrm{range}\,A_{\theta}} = M_{\theta} \ominus \ker A_{\theta}^* = M_{\theta} \ominus \{f \in M_{\theta} : T_{\omega}^* f \in M_{\theta}\}.$$

Hence by Lemma 2.5, we get (i) \Leftrightarrow (ii).

If (ii) holds, then

$$M_{\theta} \ominus w M_{\theta} \subset \{ f \in M_{\theta} : T_{\omega}^* f \in M_{\theta} \}.$$

Hence for each $n \geq 0$, we have

$$T_{\varphi(z)}^*w^n(M_\theta\ominus wM_\theta)=w^nT_{\varphi(z)}^*(M_\theta\ominus wM_\theta)\subset w^nM_\theta\subset M_\theta.$$

Since

$$M_{\theta} = \sum_{n=0}^{\infty} \oplus w^n (M_{\theta} \ominus w M_{\theta}),$$

we have $T_{\varphi}^* M_{\theta} \subset M_{\theta}$. Thus we get (iii).

 $(iii) \Rightarrow (ii)$ is trivial.

It is not difficult to see that $(iii) \Leftrightarrow (iv)$.

Suppose that $[S_{\varphi}, S_w^*] = 0$ and $[S_z, S_w^*] \neq 0$. Then we proved that

$$\theta(z)H^2 \subsetneq M$$
 and $\varphi(z)(H^2 \ominus M) \subset (H^2 \ominus M) \oplus \theta(z)H^2$.

Note that $\theta(z)H^2$ and M are invariant subspaces of H^2 . Now we fix an inner function $\theta(z)$. Here we have a question for which $\varphi(z) \in H^{\infty}(\Gamma_z)$ satisfies the above condition. In the next section, we study a similar question in the one variable Hardy space $H^2(\Gamma_z)$. In Section 4, we revisit on this question.

3. A theorem on the unit circle

In this section, we prove the following theorem.

Theorem 3.1. Let N_1, N_2 be backward shift invariant subspaces of $H^2(\Gamma_z)$ with $0 \neq N_2 \subsetneq N_1 \neq H^2(\Gamma_z)$, and $\varphi(z) \in N_1$. Then

$$\varphi(N_2 \cap H^{\infty}(\Gamma_z)) \subset N_2 \oplus (H^2(\Gamma_z) \ominus N_1)$$

if and only if $\varphi(z) = cP_{N_1}1$ for some $c \in \mathbb{C}$. In this case, if we define the operator S_{φ} on N_1 by $S_{\varphi}f = P_{N_1}(\varphi f)$ for $f \in N_1$, then $S_{\varphi} = cI$.

To prove the theorem, we need two lemmas which are not difficult to show.

Lemma 3.2. Let N be a backward shift invariant subspace of $H^2(\Gamma_z)$. Then $N \cap H^{\infty}(\Gamma_z)$ is dense in N.

Lemma 3.3. Let N be a backward shift invariant subspace of $H^2(\Gamma_z)$ with $N \neq \{0\}$ and $N \neq H^2(\Gamma_z)$. If $\varphi \in H^2(\Gamma_z)$ is a nonconstant function, then $\varphi(N \cap H^{\infty}(\Gamma_z)) \not\subset N$.

Proof of Theorem 3.1. By the Beurling theorem,

$$H^2(\Gamma_z) \ominus N_1 = \theta H^2(\Gamma_z)$$

for some nonconstant inner function θ .

First, suppose that

$$\varphi(N_2 \cap H^{\infty}(\Gamma_z)) \subset N_2 \oplus (H^2(\Gamma_z) \ominus N_1).$$

Since $N_2 \neq \{0\}$, by Lemma 3.2 there exists $h_1 \in N_2 \cap H^{\infty}(\Gamma_z)$ with $h_1(0) = 1$. Write

$$(3.1) \varphi h_1 = f_1 \oplus \theta g_1 \in N_2 \oplus (H^2(\Gamma_z) \oplus N_1) = N_2 \oplus \theta H^2(\Gamma_z).$$

Also for each $h \in N_2 \cap H^{\infty}(\Gamma_z)$, we can write

(3.2)
$$\varphi h = f \oplus \theta g \in N_2 \oplus \theta H^2(\Gamma_z).$$

When h(0) = 0, we shall prove that

$$(3.3) g(0) = 0.$$

Since

$$T_z^*(\varphi h) = \varphi T_z^* h + h(0) T_z^* \varphi = \varphi T_z^* h,$$

by (3.2) we have

$$\begin{split} \varphi T_z^* h &= T_z^* (\varphi h) = T_z^* (f + \theta g) \\ &= T_z^* f + \theta T_z^* g + g(0) T_z^* \theta \\ &= (T_z^* f + g(0) T_z^* \theta) + \theta T_z^* g. \end{split}$$

Note that $T_z^*h \in N_2 \cap H^{\infty}(\Gamma_z)$ and $T_z^*f + g(0)T_z^*\theta \perp \theta H^2(\Gamma_z)$. By the assumption, $\varphi T_z^*h \in N_2 \oplus \theta H^2(\Gamma_z)$. Hence

$$T_z^* f + g(0) T_z^* \theta \in N_2.$$

Since $T_z^*f \in N_2$, $g(0)T_z^*\theta \in N_2$. To prove (3.3), suppose that $g(0) \neq 0$. Then $T_z^*\theta \in N_2$. Let N be a backward shift invariant subspace generated by $T_z^*\theta$. Since $N_1 = H^2(\Gamma_z) \ominus \theta H^2(\Gamma_z)$, we have $N = N_1$. Since $T_z^*\theta \in N_2$, $N \subset N_2$. This contradicts $N_2 \subsetneq N_1$. Therefore g(0) = 0. Thus we get (3.3).

By (3.1) and (3.2),

$$\varphi(h - h(0)h_1) = (f - h(0)f_1) \oplus \theta(g - h(0)g_1) \in N_2 \oplus \theta H^2(\Gamma_z).$$

Since $(h - h(0)h_1)(0) = 0$, by (3.3) we get

$$(3.4) g(0) = h(0)g_1(0).$$

By (3.2) again,

$$\varphi T_z^*h + h(0)T_z^*\varphi = T_z^*(\varphi h) = (T_z^*f + g(0)T_z^*\theta) + \theta T_z^*g,$$

so that

$$\varphi T_z^* h = \left(-h(0) T_z^* \varphi + T_z^* f + g(0) T_z^* \theta \right) \oplus \theta T_z^* g.$$

Since $T_z^*h \in N_2 \cap H^{\infty}(\Gamma_z)$ and $\varphi \perp \theta H^2(\Gamma_z)$, by the assumption we have

$$-h(0)T_z^*\varphi + T_z^*f + g(0)T_z^*\theta \in N_2.$$

Similarly we have

$$\varphi T_z^{*2} h = \left(-(T_z^* h)(0) T_z^* \varphi - h(0) T_z^{*2} \varphi + T_z^{*2} f + g(0) T_z^{*2} \theta + (T_z^* g)(0) T_z^* \theta \right) \oplus \theta T_z^{*2} g.$$

Repeating the same argument, we get

$$\varphi T_z^{*n} h = \left[-\left(\sum_{j=0}^{n-1} \left(T_z^{*(n-j-1)} h \right) (0) T_z^{*(j+1)} \varphi \right) + T_z^{*n} f \right] + \left(\sum_{j=0}^{n-1} \left(T_z^{*j} g \right) (0) T_z^{*(n-j)} \theta \right) \oplus \theta T_z^{*n} g.$$

Since $h \in N_2 \cap H^{\infty}(\Gamma_z)$, $T_z^{*n}h \in N_2 \cap H^{\infty}(\Gamma_z)$. Hence by (3.2) and (3.4),

$$(T_z^{*n}g)(0) = (T_z^{*n}h)(0)g_1(0)$$

for every $n \ge 0$. This shows that $g = g_1(0)h$. By (3.2), we obtain

$$(\varphi - g_1(0)\theta)h = f \in N_2$$

for every $h \in N_2 \cap H^{\infty}(\Gamma_z)$. By Lemma 3.3, $\varphi - g_1(0)\theta$ is constant. Write $\varphi - g_1(0)\theta = c$. Since $\varphi \in N_1$, we have $\varphi = cP_{N_1}1$.

Next, suppose that $\varphi = cP_{N_1}1$. Then

$$\varphi = cP_{N_1}1 = c(1 - \overline{\theta(0)}\theta).$$

Hence for $f \in N_2 \cap H^{\infty}(\Gamma_z)$, we have

$$\varphi f = cf - c\overline{\theta(0)}\theta f \in N_2 \oplus \theta H^2(\Gamma_z).$$

Thus we get
$$\varphi(N_2 \cap H^{\infty}(\Gamma_z)) \subset N_2 \oplus (H^2(\Gamma_z) \oplus N_1)$$
.

Corollary 3.4. Let N_1, N_2 be backward shift invariant subspaces of $H^2(\Gamma_z)$ with $\{0\} \neq N_2 \subsetneq N_1 \neq H^2(\Gamma_z)$, and $\varphi(z) \in L^{\infty}(\Gamma_z)$. Define the operator S_{φ} on N_1 by $S_{\varphi}h = P_{N_1}(\varphi h)$ for $h \in N_1$. Then $S_{\varphi}N_2 \subset N_2$ if and only if

$$\varphi \in \mathbb{C} + H^2(\Gamma_z)^{\perp} + (H^2(\Gamma_z) \ominus N_1) = \overline{H^2(\Gamma_z)} + (H^2(\Gamma_z) \ominus N_1).$$

Proof. Write $H^2(\Gamma_z) \oplus N_1 = \theta H^2(\Gamma_z)$ for some inner function θ . Let

$$\varphi = \varphi_1 \oplus \varphi_2 \oplus \theta \varphi_3 \in H^2(\Gamma_z)^{\perp} \oplus N_1 \oplus \theta H^2(\Gamma_z).$$

It is easy to see that

$$P_{N_1}(\varphi_1(N_2 \cap H^{\infty}(\Gamma_z))) \subset N_2$$

and

$$P_{N_1}(\theta\varphi_3(N_2\cap H^{\infty}(\Gamma_z))) = \{0\}.$$

Hence $S_{\varphi}N_2 \subset N_2$ if and only if $P_{N_1}(\varphi_2(N_2 \cap H^{\infty}(\Gamma_z))) \subset N_2$. By Theorem 3.1, $S_{\varphi}N_2 \subset N_2$ if and only if

$$\varphi = \varphi_1 + cP_{N_1} 1 + \theta \varphi_3$$

$$= \varphi_1 + c(1 - \overline{\theta(0)}\theta) + \theta \varphi_3$$

$$= \varphi_1 + c + \theta(\varphi_3 - c\overline{\theta(0)}).$$

This completes the proof.

The following corollaries follow from Corollary 3.4 directly.

Corollary 3.5. Let N_1, N_2 be backward shift invariant subspaces of $H^2(\Gamma_z)$ with $\{0\} \neq N_2 \subsetneq N_1 \neq H^2(\Gamma_z)$, and $\varphi(z) \in H^{\infty}(\Gamma_z)$. Then $\varphi N_2 \subset N_2 \oplus (H^2(\Gamma_z) \ominus N_1)$ if and only if $\varphi \in \mathbb{C} + (H^2(\Gamma_z) \ominus N_1)$.

Corollary 3.6. Let N_1, N_2 be backward shift invariant subspaces of $H^2(\Gamma_z)$ with $\{0\} \neq N_2 \subset N_1 \neq H^2(\Gamma_z)$, and $\varphi(z) \in H^{\infty}(\Gamma_z)$. If $\varphi N_2 \subset N_2 \oplus (H^2(\Gamma_z) \ominus N_1)$, then $N_1 = N_2$ if and only if $\varphi \notin \mathbb{C} + (H^2(\Gamma_z) \ominus N_1)$.

Corollary 3.7. Let M_1, M_2 be invariant subspaces of $H^2(\Gamma_z)$ with $\{0\} \neq M_1 \subsetneq M_2 \neq H^2(\Gamma_z)$, and $\varphi(z) \in H^{\infty}(\Gamma_z)$. Then $T_{\varphi}^*(M_2 \ominus M_1) \subset M_2 \ominus M_1$ if and only if $\varphi \in \mathbb{C} + M_1$.

Corollary 3.8. Let M_1, M_2 be invariant subspaces of $H^2(\Gamma_z)$ with $\{0\} \neq M_1 \subsetneq M_2 \subset H^2(\Gamma_z)$, and $\varphi(z) \in H^{\infty}(\Gamma_z)$. If $T_{\varphi}^*(M_2 \ominus M_1) \subset M_2 \ominus M_1$, then $\varphi \notin \mathbb{C} + M_1$ if and only if $M_2 = H^2(\Gamma_z)$.

4. The main theorem

As applications of the results in Sections 2 and 3, we prove the following.

Theorem 4.1. Let N be a backward shift invariant subspace of H^2 with $N \neq \{0\}$ and $N \neq H^2$. Let $\varphi(z) \in H^{\infty}(\Gamma_z)$ be a nonconstant function. If $[S_{\varphi}, S_w^*] = 0$ and $[S_z, S_w^*] \neq 0$, then $\varphi(z) - c \in M \cap H^{\infty}(\Gamma_z)$ for some $c \in \mathbb{C}$ and $S_{\varphi} = cI$.

Proof. By Lemma 2.3, $M \cap H^2(\Gamma_z) = \theta(z)H^2(\Gamma_z)$ for a nonconstant inner function $\theta(z)$. Since $\theta(z)H^2 \subset M$, as in Section 2 we write

$$(4.1) M_{\theta} = M \ominus \theta(z)H^2.$$

Since $[S_z, S_w^*] \neq 0$, we have $M_\theta \neq \{0\}$. By Theorem 2.6,

$$(4.2) \varphi(z)N \subset N \oplus \theta(z)H^2$$

and

$$(4.3) T_{\varphi}^* M_{\theta} \subset M_{\theta}.$$

To prove the assertion, we assume that

(4.4)
$$\varphi(z) - c \notin \theta(z) H^{\infty}(\Gamma_z)$$

for every $c \in \mathbb{C}$. We shall prove that $[S_z, S_w^*] = 0$. This will be a desired contradiction. We consider two cases $\theta(0) = 0$ and $\theta(0) \neq 0$ separately.

Case 1. Suppose that $\theta(0) = 0$. If $\theta(z) = cz$ for some constant c with |c| = 1, then it is easy to see that

$$M = \theta(z)H^2 + q(w)H^2$$

for either a nonconstant inner function q(w) or q(w) = 0. In this case, by [6] we have $[S_z, S_w^*] = 0$. So, we may assume that $\theta(z) = z\theta_1(z)$ for a nonconstant inner function $\theta_1(z)$. Then

$$(4.5) H^2 \ominus \theta(z)H^2 = H^2(\Gamma_w) \oplus z(H^2 \ominus \theta_1(z)H^2).$$

We divide the proof into two subcases.

Subcase 1.1. Assume that $\theta_1(z)M_{\theta} \subset \theta(z)H^2$. Then $M_{\theta} \subset zH^2$. Hence $H^2(\Gamma_w) \subset N$. For each nonnegative integer n, let

$$L_n = \{ f(z) \in H^2(\Gamma_z) \ominus \theta(z) H^2(\Gamma_z) : w^n f(z) \in N \}.$$

Then $1 \in L_n$, L_n is a nonzero closed subspace of $H^2(\Gamma_z) \oplus \theta(z)H^2(\Gamma_z)$, and $T_z^*L_n \subset L_n$. By (4.2),

$$w^n \varphi(z) L_n \subset \varphi(z) N \subset N \oplus \theta(z) H^2$$
,

so we have

$$\varphi(z)L_n \subset L_n \oplus \theta(z)H^2(\Gamma_z).$$

By (4.4) and Corollary 3.6, $L_n = H^2(\Gamma_z) \ominus \theta(z)H^2(\Gamma_z)$. Hence

$$w^n(H^2(\Gamma_z) \ominus \theta(z)H^2(\Gamma_z)) \subset N$$

for every $n \geq 0$. Therefore

$$H^2\ominus heta(z)H^2=\sum_{n=0}^{\infty}\oplus w^nig(H^2(\Gamma_z)\ominus heta(z)H^2(\Gamma_z)ig)\subset N.$$

By (4.1), $H^2 \ominus \theta(z)H^2 = M_\theta \oplus N$, so that $M_\theta = \{0\}$. This contradicts $[S_z, S_w^*] \neq 0$.

Subcase 1.2. Assume that $\theta_1(z)M_\theta \not\subset \theta(z)H^2$. By (4.5), for every $g \in M_\theta$ we can write

$$(4.6) g = f_g(w) \oplus zh_g(z, w),$$

where $f_q \in H^2(\Gamma_w)$ and $h_q \in H^2 \ominus \theta_1(z)H^2$. Since $\theta_1(z)M_\theta \subset M$, we have

$$\theta_1(z)g = \theta_1(z)f_g(w) \oplus z\theta_1(z)h_g(z,w) \in M = M_\theta \oplus \theta(z)H^2$$

so that $\theta_1(z)f_g(w) \in M_\theta$. Since $\theta_1(z)M_\theta \not\subset \theta(z)H^2$, $f_g(w) \neq 0$ for some $g \in M_\theta$. Then $\{f_g(w): g \in M_\theta\} \neq \{0\}$. Since $wM_\theta \subset M_\theta$, by (4.6) $\overline{\{f_g(w): g \in M_\theta\}}$ is a nonzero T_w -invariant subspace of $H^2(\Gamma_w)$. Hence there is a one variable inner function g(w) such that

(4.7)
$$q(w)H^2(\Gamma_w) = \overline{\{f_q(w) : g \in M_\theta\}}.$$

Since $\theta_1(z)\{f_g(w):g\in M_\theta\}\subset M_\theta$, we have

(4.8)
$$\theta_1(z)q(w)H^2(\Gamma_w) \subset M_\theta.$$

If q(w) is constant, then $\theta_1(z) \in M_\theta$ and

$$\theta(z)H^2(\Gamma_z) \subsetneq \mathbb{C} \cdot \theta_1(z) + \theta(z)H^2(\Gamma_z) \subset M \cap H^2(\Gamma_z),$$

so that $\theta(z)H^2(\Gamma_z) \neq M \cap H^2(\Gamma_z)$. This is a contradiction. Hence q(w) is nonconstant. By (4.6) and (4.7), we get

$$(4.9) (H^2(\Gamma_w) \ominus q(w)H^2(\Gamma_w)) \perp M_{\theta}.$$

For each nonnegative integer n, let

$$L_n = \{ f(z) \in H^2(\Gamma_z) \ominus \theta(z) H^2(\Gamma_z) : f(z) w^n q(w) \in M_\theta \}.$$

By (4.8), $\theta_1(z) \in L_n$. Since $zM_{\theta} \subset M_{\theta} \oplus \theta(z)H^2$, $L_n \oplus \theta(z)H^2(\Gamma_z)$ is an invariant subspace of $H^2(\Gamma_z)$. By (4.3), we have $T_{\varphi}^*L_n \subset L_n$. By (4.4) and Corollary 3.8, $L_n = H^2(\Gamma_z) \ominus \theta(z)H^2(\Gamma_z)$. Hence

$$w^n q(w) (H^2(\Gamma_z) \ominus \theta(z) H^2(\Gamma_z)) \subset M_\theta$$

for every $n \geq 0$. Thus we get

$$(4.10) q(w)(H^2 \ominus \theta(z)H^2) \subset M_{\theta}.$$

By (4.9), $H^2(\Gamma_w)\ominus q(w)H^2(\Gamma_w)\subset N$. For each $\psi(w)\in H^2(\Gamma_w)\ominus q(w)H^2(\Gamma_w)$, let

$$L_{\psi} = \left\{ f(z) \in H^2(\Gamma_z) \ominus \theta(z) H^2(\Gamma_z) : f(z)\psi(w) \in N \right\}.$$

Then $1 \in L_{\psi}$, and in the same way as Subcase 1.1, L_{ψ} is a nonzero closed subspace of $H^2(\Gamma_z) \ominus \theta(z)H^2(\Gamma_z)$ such that $T_z^*L_{\psi} \subset L_{\psi}$ and $\varphi(z)L_{\psi} \subset L_{\psi} \oplus \theta(z)H^2(\Gamma_z)$. Hence by (4.4) and Corollary 3.6, $L_{\psi} = H^2(\Gamma_z) \ominus \theta(z)H^2(\Gamma_z)$. Therefore

$$\psi(w)(H^2(\Gamma_z) \ominus \theta(z)H^2(\Gamma_z)) \subset N$$

for every $\psi(w) \in H^2(\Gamma_w) \oplus q(w)H^2(\Gamma_w)$, and hence

$$(4.11) \qquad \qquad \left(H^2\ominus\theta(z)H^2\right)\ominus q(w)\left(H^2\ominus\theta(z)H^2\right)\subset N.$$

Since $H^2 \ominus \theta(z)H^2 = M_\theta \oplus N$, by (4.10) and (4.11) we get

$$N = (H^2 \ominus \theta(z)H^2) \ominus q(w)(H^2 \ominus \theta(z)H^2).$$

By [6], this shows that $[S_z, S_w^*] = 0$.

Case 2. Suppose that $\theta(0) \neq 0$. Let $\varphi'(z) = \varphi(z) - \langle \varphi, \theta \rangle \theta(z)$. Then $S_{\varphi} = S_{\varphi'}$, so that we may assume that $\varphi \perp \theta$. Write

(4.12)
$$\varphi(z) = \varphi_1(z) + \theta(z)z\varphi_2(z),$$

where $\varphi_1 \in H^2(\Gamma_z) \ominus \theta H^2(\Gamma_z)$ and $\varphi_2 \in H^2(\Gamma_z)$. By (4.4), $\varphi_1(z) \neq 0$. Since $\theta(0) \neq 0$, $T_z^* \varphi_1(z) \neq 0$. For each $h \in N$, by (4.2) we can write

$$\varphi h = f_h + \theta g_h \in N \oplus \theta H^2.$$

Applying T_z^* for the both side of the above, we have

$$\varphi T_z^* h + h(0, w) T_z^* \varphi = T_z^* f_h + g(0, w) T_z^* \theta + \theta T_z^* g_h.$$

Hence by (4.12),

$$\varphi T_z^* h = -h(0, w) T_z^* \varphi + T_z^* f_h + g_h(0, w) T_z^* \theta + \theta T_z^* g_h$$

= $-h(0, w) T_z^* \varphi_1 + T_z^* f_h + g_h(0, w) T_z^* \theta + \theta (T_z^* g_h - h(0, w) \varphi_2).$

Note that

$$-h(0,w)T_z^*\varphi_1 + T_z^*f_h + g_h(0,w)T_z^*\theta \perp \theta H^2.$$

Since $h \in N$, we have $T_z^*h \in N$, so that by (4.2) we have

$$-h(0, w)T_z^*\varphi_1 + T_z^*f_h + g_h(0, w)T_z^*\theta \in N.$$

Since $f_h \in N$, also we have $T_z^* f_h \in N$ and

$$(4.13) -h(0, w)T_z^*\varphi_1 + g_h(0, w)T_z^*\theta \in N.$$

Write

$$\Theta(z) = \theta^2(z) - \theta(0)\theta(z).$$

We have

$$T_{\theta}^*_{\frac{\theta-\theta(0)}{z}}T_z^* = T_{\theta^2-\theta(0)\theta}^* = T_{\Theta}^*.$$

Since

$$T^*_{\theta^{\frac{\theta-\theta(0)}{}}}N\subset N,$$

$$-h(0,w)\left(T_{\Theta}^*\varphi_1 + aT_{\Theta}^*\theta\right) + g(0,w)T_{\Theta}^*\theta \in N.$$

Since $\varphi_1 \in N \subset H^2 \ominus \theta H^2$, we have $T_{\Theta}^* \varphi_1 = 0$. Since $T_{\Theta}^* \theta = -\overline{\theta(0)}$, we get

$$a\overline{\theta(0)}h(0,w) - \overline{\theta(0)}g(0,w) \in N.$$

Since $\theta(0) \neq 0$,

$$ah(0, w) - g(0, w) \in N.$$

Thus we get

$$ah(0, w) - q(0, w) \perp \theta(z)H^{2}$$
.

Because $\theta(0) \neq 0$, we have ah(0, w) - g(0, w) = 0. Hence by (4.9),

$$-h(0, w)T_z^*\varphi_1(z) \in N.$$

Note that $T_z^*\varphi_1(z)\neq 0$. In the same way as Subcase 1.2,

$$h(0,w)(H^2(\Gamma_z) \ominus \theta(z)H^2(\Gamma_z)) \subset N \subset H^2 \ominus \theta(z)H^2$$

for every $h \in N$. Since $T_w^*N \subset N$ and $N \neq \{0\}$, $\overline{\{h(0,w): h \in N\}}$ is a nontrivial T_w^* -invariant subspace of $H^2(\Gamma_w)$, so that

$$\overline{\{h(0,w):h\in N\}} = H^2(\Gamma_w) \ominus q(w)H^2(\Gamma_w)$$

for either nontrivial inner function q(w) or q(w) = 0. Hence

$$(H^2 \ominus \theta(z)H^2) \ominus q(w)(H^2 \ominus \theta(z)H^2) \subset N.$$

For every $f \in N$, write

$$f = \sum_{n=0}^{\infty} \oplus f_n(w) z^n.$$

Since $T_z^*N\subset N,\, f_n(w)\in H^2(\Gamma_w)\ominus q(w)H^2(\Gamma_w)$ for every $n\geq 0$. Hence

$$N \subset (H^2 \ominus \theta(z)H^2) \ominus q(w)(H^2 \ominus \theta(z)H^2).$$

Therefore

$$N = (H^2 \ominus \theta(z)H^2) \ominus q(w)(H^2 \ominus \theta(z)H^2).$$

This shows that $[S_z, S_w^*] = 0$. This completes the proof.

References

- [1] H. Bercovici, Operator Theory and Arithmetic in H^{∞} , Mathematical Surveys and Monographs, 26. American Mathematical Society, Providence, RI, 1988.
- [2] A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math. 81 (1948), 239–255.
- [3] X. Chen and K. Guo, Analytic Hilbert Modules, Chapman & Hall/CRC, Boca Raton, FL, 2003.
- [4] K. J. Izuchi and K. H. Izuchi, Commutativity in two variable Jordan blocks on the Hardy space, preprint.
- [5] _____, Cross commutators on backward shift invariant subspaces over the bidisk, Acta Sci. Math. (Szeged) 72 (2006), no. 1-2, 251-270.
- [6] K. J. Izuchi, T. Nakazi, and M. Seto, Backward shift invariant subspaces in the bidisc. II, J. Operator Theory 51 (2004), no. 2, 361–376.
- [7] ______, Backward shift invariant subspaces in the bidisc. III, Acta Sci. Math. (Szeged)70 (2004), no. 3-4, 727-749.
- [8] V. Mandrekar, The validity of Beurling theorems in polydiscs, Proc. Amer. Math. Soc. 103 (1988), no. 1, 145–148.
- [9] N. Nikol'skii, Treatise on the Shift Operator, Springer-Verlag, Berlin, 1986.
- [10] W. Rudin, Function Theory in Polydiscs, Benjamin, New York, 1969.
- [11] R. Schneider, Isometries of $H^p(U^n)$, Canad. J. Math. 25 (1973), 92–95.

Kei Ji Izuchi

DEPARTMENT OF MATHEMATICS

NIIGATA UNIVERSITY

Niigata 950-2181, Japan

E-mail address: izuchi@math.sc.niigata-u.ac.jp

Kou Hei Izuchi

FACULTY OF EDUCATION

Yamaguchi University

Yamaguchi 753-8513, Japan

E-mail address: kh.izuchi@gmail.com