참고문헌
- W. W. Bell, Special function for scientists and engineers, D. Van Nostrand Co., Ltd., London-Princeton, N.J.-Toronto, Ont., 1968.
- R. Bhattacharya, A MATLAB Toolbox for Optimal Trajectory Generation, 2006.
- A. H. Bhrawy and S. I. El-Soubhy, Jacobi spectral Galerkin method for the integrated forms of second-order differential equations, Applied Mathematics and Computation 217 (2010), 2684-2697. https://doi.org/10.1016/j.amc.2010.08.006
- E. H. Doha, On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials, J. Phys. A 37 (2004), no. 3, 657-675. https://doi.org/10.1088/0305-4470/37/3/010
- E. H. Doha and H. M. Ahmed, Efficient algorithms for construction of recurrence relations for the expansion and connection coefficients in series of quantum classical orthogonal polynomials, Journal of Advanced Research - Cairo Univ. 1, 193-207 (2010).
- E. H. Doha and A. H. Bhrawy, Efficient spectral-Galerkin algorithms for direct solution of fourth-order differential equations using Jacobi polynomials, Appl. Numer. Math. 58 (2008), no. 8, 1224-1244. https://doi.org/10.1016/j.apnum.2007.07.001
- E. H. Doha and A. M. Waleed, Efficient spectral-Galerkin algorithms for direct solution of second-order equations using ultraspherical polynomials, SIAM J. Sci. Comput. 24 (2003), no. 2, 548-571.
- T. M. El-Gindy and M. S. Salim, Penalty function with partial quadratic interpolation technique in the constrained optimization problems, J. Inst. Math. Comput. Sci. Math. Ser. 3 (1990), no. 1, 85-90.
- D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, CBMS-NSF Regional Conference Series in Applied Mathematics, No. 26. Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1977.
- IPOPT open source NLP solver. https://projects.coin-or.org/Ipopt.
- H. Jadu, Spectral method for constrained linear-quadratic optimal control, Math. Comput. Simulation 58 (2002), no. 2, 159-169. https://doi.org/10.1016/S0378-4754(01)00359-7
- W. Kang and N. Bedrossian, Pseudospectral optimal control theory makes debut fiight, saves nasa 1m in under three hours, SIAM News 40 (2007).
- W. Kang, Q. Gong, I. M. Ross, and F. Fahroo, On the Convergence of Nonlinear Optimal Control Using Pseudospectral Methods for Feedback Linearizable Systems, Internat. J. Robust Nonlinear Control 17 (2007), no. 14, 1251-1277. https://doi.org/10.1002/rnc.1166
- H. T. Rathod, B. Venkatesudu, K. V. Nagaraja, and Md. S. Islam, Gauss Legendre-Gauss Jacobi quadrature rules over a tetrahedral region, Appl. Math. Comput. 190 (2007), no. 1, 186-194. https://doi.org/10.1016/j.amc.2007.01.014
- I. M. Ross and F. Fahroo, Pseudospectral knotting methods for solving nonsmooth optimal control problems, Journal of Guidance Control and Dynamics 27 (2004), 397-405. https://doi.org/10.2514/1.3426
- J. Shen and L.Wang, Some recent advances on spectral methods for unbounded domains, Commun. Comput. Phys. 5 (2009), no. 2-4, 195-241.
- G. Szego, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., Vol. 23, 1985.
- M. Urabe, Numerical solution of multi-point boundary value problems in Chebyshev series. Theory of the method, Numer. Math. 9 (1967), 341-366. https://doi.org/10.1007/BF02162424
- J. Vlassenbroeck, A Chebyshev polynomial method for optimal control with state constraints, Automatica J. IFAC 24 (1988), no. 4, 499-506. https://doi.org/10.1016/0005-1098(88)90094-5
피인용 문헌
- Jacobi–Gauss–Lobatto collocation method for the numerical solution of nonlinear Schrödinger equations vol.261, 2014, https://doi.org/10.1016/j.jcp.2014.01.003
- Jacobi–Gauss–Lobatto collocation method for solving nonlinear reaction–diffusion equations subject to Dirichlet boundary conditions vol.40, pp.3, 2016, https://doi.org/10.1016/j.apm.2015.09.009
- A Jacobi–Gauss–Lobatto collocation method for solving generalized Fitzhugh–Nagumo equation with time-dependent coefficients vol.222, 2013, https://doi.org/10.1016/j.amc.2013.07.056
- A shifted Jacobi collocation algorithm for wave type equations with non-local conservation conditions vol.12, pp.9, 2014, https://doi.org/10.2478/s11534-014-0493-4
- Numerical solution of initial-boundary system of nonlinear hyperbolic equations vol.46, pp.5, 2015, https://doi.org/10.1007/s13226-015-0152-5
- A Jacobi collocation approximation for nonlinear coupled viscous Burgers’ equation vol.12, pp.2, 2014, https://doi.org/10.2478/s11534-014-0429-z
- A shifted Jacobi-Gauss-Lobatto collocation method for solving nonlinear fractional Langevin equation involving two fractional orders in different intervals vol.2012, pp.1, 2012, https://doi.org/10.1186/1687-2770-2012-62