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EXPLICIT FORMULAS FOR THE BERGMAN KERNEL ON
CERTAIN FORELLI-RUDIN CONSTRUCTION

Livyou ZHANG, AN WANG, AND QINGBIN L1

ABSTRACT. In this note, we present certain circular domain, named Fore-
1li-Rudin construction or Hua construction, which is built on Cartan do-
mains. We compute the explicit Bergman kernel for it and get the corre-
sponding weighted Bergman kernel on its base.

1. Introduction and main results

The Bergman kernel was introduced by S. Bergman in the 1920’s [1]. In
1933, Bergman generalized this theory to the case of several complex vari-
ables [2]. It’s known that every bounded domain in C™ admits a non triv-
ial Bergman kernel. Let Q be a bounded domain in C" and L?(f2) denote
the space that consists of all the square-integral functions associated to the
Lebesgue measure dV. Let L?(Q) := L?(2) N O(2). The Bergman kernel
K(z,w) of the domain € is the unique sesqui-holomorphic functions satisfy-
ing the skew-symmetry property that K(z,w) = K(w, Z) and the reproducing
property that f(z) = [, f(w)K(z,w)dV for any f € L3 (). If multiply the
Lebesgue measure dV by a measurable non-negative function p, then the cor-
responding weighted Bergman kernel K,(z,w) for L?(£2, p) can be obtained
according to the Riesz representation theorem, where Li(Q, p) consists of all
square-integrable functions associated to the measure pdV .

Stefan Bergman himself [3] computed the kernel of the domain {(w,z) €
C?% : |w|?P + |2]? < 1} in 1936. Using holomorphic automorphism group, Hua
[13] obtained the Bergman kernels for the bounded symmetric domains in the
1950’s. D’Angelo [6] calculated the Bergman kernel of the domain {w € C, z €
C" : |w|*’ + ||z||* < 1} as the sum of an orthonormal series in 1978 and
generalized his results in 1994 while w is also a vector in C™ [7]. For the complex
ellipsoid in C™, Franciscs and Hanges [12] gave the Bergman kernel in terms
of hypergeometric functions. Oeljeklaus and Pflug [16] computed the Bergman
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kernel for minimal ball B, in 1997. In 1998, Roos and Yin [20] introduced
so called Cartan-Hartogs domains on which Bergman kernels were obtained in
close form by Yin in 1999. In [8], the Bergman kernel for the symmetrized
polydisc G,, was obtained by Edigarian and Zwonek. Recently, Jong-Do Park
computed the explicit formula of the Bergman kernel for a nonhomogeneous
domain {z € C? : |21]|* 4 |22|* < 1} and the kernel is not algebraic [17].

As for the weighted Bergman kernel, the important formula for the Hartogs
domain

Qy ={(z,w) e xC™: lw|* < p(2)}

is

m! o= (m+1
(1) Kap(w), Ga) = S D gy e D,
k=0

due to Ligocka [14], where K¢ x+m denotes weighted Bergman kernel on
with respect to the weight p**™ and the Pochhammer symbol (m + 1), =
(m+1)(m+2)---(m+k).

The formula was shown firstly by Forelli and Rudin [11] for  the unit disc
and p(z) = 1 — |z|? and later generalized by Engli§ to the following so-called
Forelli-Rudin construction [9]

le”f = {(&t,z) eC" xC™" xQ: s + |4 < 1},
L p1(2)  w2(2)

where @1 and o are two positive functions on €.

In 2006, Englis and Zhang constructed a type of Hartogs domain, named
generalized Forelli-Rudin construction, whose “fiber” of the base domain {2 is,
instead of the disc or the ball, an arbitrary irreducible bounded symmetric
domain. They expressed the Bergman kernel in terms of weighted Bergman
kernels on its base € [10].

Inspired by the work of above, we study the Bergman kernel for a certain
Forelli-Rudin construction which we call Hua construction of the first type.
The aim of the present paper is to give an explicit formula for the Bergman
kernel without the use of the weighted Bergman kernel for the base domain
Q. As an application, we can also obtain the corresponding weighted Bergman
kernel for 2 explicitly.

In more details, let the base domain €2 be the irreducible bounded symmetric
domain of the first type Ri(m,n), and ;(Z) = det(I—ZZ")%, (j = 1,2,...,r)
positive continuous functions on PR;. We consider a certain Forelli-Rudin Con-
struction in CN1 N2+ 4N 5 3. that is

- ~ r 2py
Q=QN o Ne — Ly e CN, Z € Ri(m,n) E [l <1y,
P10y Pr { ( ) P QDI(Z)
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where Ni,...,N,, r are all positive integers, p; > 0, g¢; > 0 and the norm
llwi]|? = |win)? + -+ + Jwin, |2 Of course we can construct the similar Forelli-
Rudin constructions based on the other irreducible bounded symmetric do-
mains, we take RR; for example only.

We will use the integral formula of ¢;(Z) over Ri(m,n) in the proof of our
main theorem, which is an important result in Hua’s book [13]. Therefore, we
call ng o Nr Hua construction also. Obviously, when r = 1 the domain QN
exact the so-called Cartan- Hartogs domain which was studied by many authors
[21, 19, 18]. Moreover, when r = m = 1 the domain is the complex ellipsoid in
complex Euclidean space and a further special case r =m =n = N; = 1 is the
Thullen domain in C2.

Due to Boas-Fu-Straube’s inflation theorem in [5] (see also [4]), it’s enough
to consider only the case N1 Ny =--- = N, = 1. Denote by Kg the Bergman

kernel on the diagonal for Q """ we have the following main results.

HPr 3

Theorem 1. For any p; € RT, the Bergman kernel for Q
mulated as the following inﬁmte series

_can be for-

mn  vi vi—u1 V2 Vp—1—Ur—1 U,
Ko=C% 2 2 > > 2 W W)l +1-u)
v1=0u1=0 v2=0 u2=0 v,=0 ur,=0
au1+ tug

Uy Sty —d
HLla uy ax’}f, xll T H(m)det(I—ZZt)

where bgfj)(j =1,2,...,7) are constant coefficients and the notations
[l_,» (v +1) q
C===-- Li= , d=m+n+
rtmn ! P(u; + DT(vp + 1 — wy) Z pl

(1 + 2 Jl“)
. N i . . P
H(z)= E TGty gr)xyt o xdry, TG,y jr) = A
Jit1l
1310 I1i- ( P )
The components of the vector x in H(z) are defined by x; = |wi|?¢1(Z2)” 7,
l=12,...,r

Ifallp;(j = 1,2,...,7), the power of |w;|?, are positive integers, the Bergman

kernel on the diagonal Kg((w, Z); (w, Z)) can be expressed in terms of Appell’s
hypergeometric functions. We have:

Corollary 1. For all p; € Zt, j = 1,2,...,r, the Bergman kernel on the
diagonal is

mn vy Vp—1—Ur—1 v, p1—1 pr—1

Ko=CY > > > 3. Zb(ll)"'bfﬁ)

v1=0u;=0 v,.=0 ur=0k1=0
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- T(vp + 1 =) [[ LT (R, .. k) G(a)det(I — Z22") ¢
=1

where the function

6u1+'“+ur r u Tk (r) kl +1 k+1
G) = = Ltk ) 1, —= xP .
@)= gap g Ll +Z ol X

The notations 1 = (1,...,1), K1 — (%,...,%) and FX) is Appell’s

hypergeometric function with r variables.

(r)

General speaking, the hypergeometric function £ ’ is still a series of infinite

: Ol,l T |27t
form. Notice that whenever (w, Z) € QL then Y7, |o|Pt = 37, f:ll @
< 1, therefore FX) converges at the point (zi',...,zP7). The presence of the

hypergeometric functions in Corollary 1 provides an opportunity to approach
the asymptotic behavior of the Bergman kernel near some weakly pseudoconvex
boundary points. It can also be used to obtain an asymptotic expansion of the
Bergman kernel, see ref. [12].

Now we consider the case that the reciprocal of p; is an integer for j =
1,2,...,7 — 1 and p, € RT. In this case the domain ﬁé’l“,j,l%‘ doesn’t admit
smooth boundary. We have the following theorem.

Theorem 2. Let 1/p; € ZT, J=1L12...r—1andp € R*. Then the

Bergman kernel of the domain Q """ 1¢ 18
mn vy vi—u1 V2 Vp—2—Ur—2 Vp—1 Ur—1—Ur_1+1
Ko=C-3 > 2 2. 2 2 2
’U1:O u1:O 'U2:0 ug:O vr_1:0 uT_1:O ’UTiO
B r—1
b0 bR TT LK () det(T — Z221)
1=1
where
Uit Hur—1 .
K(x) £ (),

= w1 Upr—1
Oxy' - 0z,

1/p171 l/p.,vflfl

Sy (v, + 1) (1 — )= tD)

B 14+1/ps’
a1=0 a,_1=0 (1 — 27"711 wf“mf")

ar—l
 Oxy-- 0T

T
_ /1
(11— E WP )T e w, = 2PV L

Applying Ligocki’s formula (1.1), one can quickly obtain the weighted Berg-
man kernel of the bounded symmetric domain fR;(m,n) with respect to the
weight ¢;(Z). We consider only the fiber dimension 1, that is r = 1.
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Corollary 2. Denote by Kg o the weighted Bergman kernel for Ri(m,n) with
respect to the weight o(Z) = det(I — ZZ*)%/?. We have
1

7Trnn%»l

Ko, o(2,7) = ST bT(v+ 1) det(I — 22t) =),

v=0
2. Preliminaries

In this section, some elementary knowledge of Hua construction Q}D’l‘;:j,l,%_ we

introduced, including some properties and definitions, will be given.

Definition 1. Let © be a bounded domain in CM+¥ with the center 0. If the
holomorphic automorphism group Aut(f2) includes the following mapping:

w; = eV 10y, 6, eR, 1=1,2,..., M,
zi=eV% 0ER, k=1,2,...,N,
then we call ) a semi-Reinhardt domain.

Note that a Reinhardt domain is semi-Reinhardt, and a semi-Reinhardt
domain is circular. On the contrary, this is not true. Evidently, lea’l';j_{% is a
semi-Reinhardt domain, “Reinhardt” in w and “circular” in z.

We recall the definition of one of Appell’s hypergeometric functions in several
variables.

Definition 2. Denote that (s), = ™ — g(s+ 1)+ (s+m—1). If s =

I'(s)
(81,...,8,) and m = (mq,...,m,) is a multi-index, then (), = [Tr_;(Sk)my-
The multi-variable hypergeometric function is defined as
(O‘)\ml(/g)m
F(V) aaﬁ)va = 733"1’
Al = 2 T

where z € C¥, and a € R, 8= (61,...,5.), v = (71,...,7 ) are parameters.

The multi-variable series FX’) converges when |z1]| + -+ 4 |2,] < 1 and

diverges when |z1|+ -+ |z, | > 1. fv =1, Ff(ll)(cv7 B,7, ) coincides with the
classical Euler-Gauss hypergeometric function F(a, 8,7, ).
Analogous to the automorphism group of irreducible bounded symmetric do-

mains, we get a subset of the holomorphic automorphism group Aut(ﬁi;l'; '_*_ 1 o)

Denote by Aut(,) for short.

Lemma 1. Aut(?)w), the holomorphic automorphism subgroup of (2(1#;1“"1
consists of the following maps,
wr = wy det(I — ZoZ8) % det(I — ZZ8) n, 1 <1<,
Z*=AZ - Zy)I - Z{Z) 1D 1,

where Zy € Ri(m,n), ALA = (I — ZyZ5)~, D'D = (I — ZZy) 1.
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Proof. 1t’s known Z* = A(Z — Zy)(I — ZyZ)~* D~ is the biholomorphic trans-
formation of My(m,n), which maps the point Zy onto 0 [15]. We have

1-2°2" = (A) NI~ 2251~ 221~ ZZ") A7

and
det(I — Z*Z*") = det(I — ZoZE)| det(I — ZZ8)| "2 det(I — ZZY),
wiw = wpint det(I — ZoZ8) % |det(I — ZZ5)| ot
Therefore,
|wi [ |wi [P
det(l — 2+ 2" yu — det(I - ZZ
which complete the proof. O

The lemma tells us that for any point (w, Z) € SNI, we can choose an element
Fz € Aut(Qy,) such that Fz(w, Z) = (w*,0).

Lemma 2. Let Q be a semi-Reinhardt domain in CM+N_ We can choose
P,Ef)(z) such that

{ij,g)(z)} = {w{lwgz - -wg\j‘fP,g)(zl, ce zN)}
is a complete orthonormal basis of L (), where

J:(.]lﬂ'?.]M)) j17j27"')j1\/17 k:0717"'?
1=1,2,....,mp; mp=(N+k—DIEN -1

and P,g)(z) is a homogeneous polynomial of degree k in z1,...,zn. For any
fized k,j, the my polynomials P,g)(z), P,g)(z), ey pYw

ey, (2) are linear inde-
pendent.

Proof. 1t is known {w{lwé2 w%f } forms a complete orthogonal basis of a
bounded Reinhardt domain containing the origin and Py (2)(k = 0,1,...;1 =
1,2,...,my) is complete orthogonal for a bounded circular domain. Then it is
standard to prove w? P,g? )(z) is orthonormal by normalization.

Let ®j5(w,z) = ijé{)(z). For any holomorphic function f(w,z), f(w,z)
can be expanded with respect to w and z respectively, i.e.,

flw, z) = ij(z)wj = ijklP,g)(z)wj = Z b ®jni(w, 2).
Therefore it’s sufficient to verify b = [, f(w, 2)®;j(w, z)dV to prove the
completeness. Take a normal exhausting sequence €4, s, ... that converges
to £, where ; C €;;, and assume all 2; are semi-Reinhardt. The series
> biki®jri(w, z) converges uniformly on ﬁj. The conclusion then follows after
taking a limit

lim bjqu)jkl(m Z)(I)jkl(’w, Z)dV = / bjqu)jkl(w, z)®jkl(w7 z)dV = jkl.D
v Q

j—
JOOQ]
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Lemma 3. Let x; = xy(w, Z) = |w|* [det(I — ZZt)}_ﬁ. Then x; is invari-

ant function under the action of Aut(@l,), ie., z(w*,Z*) = xj(w,2), 1 =
1,2,...,r

Proof.
a(w*, Z°) = |w |P[det(I — 2*Z+")] " #
= w2 [det(I — ZoZ8)] ¥ | det(I — ZZ8)| "t
+ [det(I — Z0)|det(I ZZ5)| "% det(I — ZZt)] "
= |wy|? [det(I — ZZ")]~ o = z(w, Z). 0

We give the following lemma we used for simplifying the proof of theorems.
One can find it in the text book of several complex variables.

Lemma 4. Let ji,js2, ..., Jr be nonnegative real numbers. Integration in polar
coordinates in each variable reveals that

T

-
VN

j1,+1> .y
ar Il b Jit1
(21) / H|wl| Jlde = L o

3l <R i, ( Z

where dV,, = (\/2_71) ldwl Adiwy A--- A dw, A dib,.
Lemma 5. Let Z € Ri(m,n), A > —1 and Jy, n = f%(m,n) det(I — ZZH) V.
Then
T L DO+ ) TT - TN + k2)
[T (A + k)

This is an important integral formula in Hua’s book [13].

(2.2) Jm =T

Lemma 6. Suppose that P(x) is a polynomial of degree n in x,
P(z) = ana™ + an_ 12" '+ tajz+ 1.
Then for any o € R\ {0}, there are constants b; such that

" T(azr+j+1)
2.3 P(x) = bj—————=
where by = P (%1) and the other coefficients b; can be evaluated by

T(v+1)b, = i(l)k<Z>P (ka 1) L v=1,...,n.

k=0

Proof. See [22] for direct computations. O
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To make the paper more readable, now we collect the following several iden-
tities used in the text omitting the proofs. One can check them by induction.

Lemma 7. For any s,t,r € R and k, | € Z*, the following formulas are true

I+1 .
(2.4) E:F%+sﬁﬂ+l—k+¢) s+t+l§:rw+swa_k+ﬂ

T(k+ )Tl +2—k)  1+1 T(k+D)I(I+1—k)

k=0

F(s+t+k) k+1 Z Tp+s)T(t+k—p)
I(s+1t) “T(p+1(k+1-p)

(2.5)

Next we need to know the sum of a certain Taylor series.

Lemma 8. For ||z| <1 and s > 0, we have

(laf+s)  sa_ 1
(2.6) Zr 1‘[1“04]4—1)m2 TR

We will use the following converging power series in the proof of the main
theorem. See [12] for a proof.

Lemma 9. For s € Rt and—GZ+ 1<e<r—1. Let
"t
s+ T i) |
J1,.J2 Jr—1

il
hs(x,...,2p_q) = Z =1 ol x)
= 1= (J,H)

If Z:;ll |z,

Po < 1, then
1

-1
o1 e I'(s)
hs(l‘l,...,xr_l)zi - ,
Oy -+ Oxp_1q QIZ::O Q,E::o (1 — S wtea? )

where w, = e2V I gPe = |p, [PeeV Tl L p = argr, <7, 1 <1 <
r—1.

3. Proofs
Proof of Theorem 1. For any point (w, Zg) € Ql """ _, it follows from Lemma

1, there exists an element F' € Aut(Qg,) such that F(w7 Zp) = (w*,0). Accord-
ing to the rule of Bergman kernels transformation, we have

(3.1) Kg(w, Z;w,Z) = Kg(w*,0;w",0) |det Jp|y, _,,

A(w*, Z*) ow”
J — N 7 = ow * .
F‘ZOZZ < o(w, Z) )ZO—Z ( * %ZZ Zo=7

where
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ow* oz*
det(aw>det<az)

—(m+n+zr: z—l)
="

Therefore,

2

|det Jrl 7,z =

(3.2) Zo=2

= det(I — 227"
Next we need only compute Kg(w*,0;w*,0). Denote w by w* for convenience.

Now we take the complete orthonormal bases {wj P,g )(Z)} of Li(ﬁclp’i;i’..l,w)

due to Lemma 2 since Q}D’l“"{l is a semi-Reinhardt domain, where

s Pr

j:(jlv"',jM)a jlana"'ajM, k:()v]-v"‘v
1=1,2,...,mp; mp = (N +k—DI[E(N -1

Hence

_ . . 2 X . 2 2 2
Kg(w,0:0,0) = 3 [w PP O)] = 3 [ PO = 3 la ol
Ikl 17120 17120

where a; = Pé{)(()) is a constant.
We are going to determine the constant coefficient a;. Notice that ajuw’ =

w’ Pé{) = ®;; is an element in the set of complete orthonormal basis, then
12
/ lajw’|” dVy,dV. = 1,
Q
which implies
-2 2; 24,
7% = [ Jan P aViav
Q

= / det(I — ZzZHMaVv, /=™ C - T(j1, ..., jr)
Ri(m,n)

according to Lemma 4, where

P14y it .
( +l; P ) and )\ Zzﬂ(jl‘Fl)
HIT:I r (jlp;lrl) =

C = H;:lpl

qrtmn ’

T(j1,-- - dr) =

By Lemma 5, we have

Zl:ln I'(A + k)

2 - y
1c=C-T yeeesr) ™ n )
‘a]‘ (]1 J ) ||k:1 F()q +k) | |k:1 F(/\l +k)
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Observe that
T (A + k) IR AT+ k)
[Tis, F()‘l + ) [Thei DL+ k) Hk 1T+ k)

)\1—|—k

(3.3)

is a polynomial of degree mn in A1, then by Lemma 6 the polynomial (3.3) can
be rewritten as

mn (Bt +1)

(3.4) RCHED N

= (A

)

where b(()l) =fi (—%) and

T(v+ )b = i(—nk (Z) f (-Uf“)ql) L v=1,2,...,mn.

5—0 P1

T

Substitute 3 I (j; + 1) for A in the function fi(A1), we have

)

Zb 31+1 +A+uv+1)
(i+1)+r+1)

’U10

where Ay = Z i +1).
Let -
F()\N +1+ V-1 — un—l)

. = 2< k<
(35)  fu(h) My sk
L(v+1) L(j+1+w)
3.6 L = B =—" T U 1<I<r,
(3.6) YT T+ DT+ 1 —w) TG+ 1) "

applying Lemma 7, we can separate j; + 1 form 5. That is

mn Ui

=3 > bWVLiBfa(Na),

vl—O up= =0

where f2(\2) is a polynomial of degree v; — ug in As.
Again by Lemma 6 and Lemma 7, we can deal with fo(\2) using the same
method and we have

V1 —U1 p24g1 /\ + Vg + 1)
3.7 Ao) = b2 (‘”p‘ ,
( ) f2( 2) Uzzz:o V2 r <p2q1 )\ N 1)

q2p1




BERGMAN KERNEL FOR CERTAIN FORELLI-RUDIN CONSTRUCTION 79

where b((f) =f (—M) and

P2q1
- v (k +1)gop1
Fz/—l—lb,(f): —1]“() (— ,v=1,2,...,01 —uy.
e = 0t (7) e (-5 —_—
Then

mn v V1 —UuUl V2

Z Z Z Z bvi)bfj)L LyB1Bs f3(A3),

v1=0u1=0 v2=0 uws=0
r
where A3 = % Z Zf(]k + 1)
k=3

If we continue the above steps, we obtain

mn v Vp—2—Upr—2 Vr—1 r—1
38) A=Y > > > bW D ] LB (A
v1=0u1=0 Vr—1=0 u,_1=0 =1
where
Vi—1—Uj—1 T (PlQl 1/\l +Ul + 1)
i) = Z bgzl) qu;ql
14l —1
v =0 r (‘Npl 1)\ + 1)
11— jin+ 1
N =P 1ZQk(]k+ )’ l<i<r
Q-1 Pk
and
- k+1Dapi—1
T+ )0 = Sk (V) (- EE Daws =1, U — w1
(V+ )V Z( ) k fl D1 , V ) , Vi—1 Up—1

k=0
Now we consider the function f,.(A.). Since f,.(A;) is a polynomial of degree
Vp_1 — Upr—1, it can be formulated to

Vp—1—Ur—1 Uy

_ P F(jr +1+u,)
PO 2 X W) TG

v,=0 u,=0
Let #; = |wy|?, 1 =1,2,...,7. Then the Bergman kernel
_ 2 125 ) . j ;
Kg(w,0;0,0) = Y |a [ |w[* = Y C-T(r, .., jr) fr(Aa)aft - air,
[71=0 7120

Note that
T mn Vr—1—Ur—1 U,
D= => Z SN b b (v, + 1 HLlle
=1 v1=0u1=0 v,-=0 u,r=0

and (
. T jl +1+ Ul) ; o™
Bt = Ju Jituy
1 TGi+1) 0= gzt
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we have
mn vl V1—U1 U2 Vpr—1—Ur—1 vy
Kg(w, =C- DD > X D DM
v1=0u1=0 v2=0 ugy=0 v,=0 ur=0
au1+ Uy u .
T +1- HLlax“1~ aa#rz gt H (),
where H(z) = 3 T(j1,..., 0 )" - xir.
[71=0
Replace w by w* and this completes the proof of Theorem 1 since we have
formula (3.1) already. O

Proof of Corollary 1. Let p1,...,p, € ZT. Recall that

~ il
F(1+z; Z )

T Jit1
MM, T (42)

T(j1s---dr) =

then

(3.9) H(zx) = > Z

Let j; = pikf + ki, ki € Z and 0 < k; < p; — 1, the formula (3.9) is
H(z)

ki+1
pi—1  pr=1 oo ) (14—2]@’*“‘2 lz)
z : z : z : z : =1 =1 p1]€;+k1 prpk:'i‘kr
— e Il “ e xr
kl—‘rl
k1=0 k=0 ki=0 k=0 Hl 1 pL
p1—1 pr—1

=YY ek kh...,kr)Fﬁf“)<1+§T:klp+1,1,m,xp>.
=

k1=0 k,.=0 P
Here the notations 1 = (1,...,1), % = (%, cel %), and FX) is Appell’s
hypergeometric function. This completes the proof of Corollary 1. O

Proof of Theorem 2. Let
(3.8), the Bergman kernel

. p— € Z* and p, € RT. Start from formula

Kﬁ(w,o;ﬂ),O)
= Z C'T(jla"'ajr)fl(Al)x{I"'xir
7120
mn U1 Vp—2—Upr—2 VUpr_—1 T

Qurt ot ur—1

Cz Z Z Z b(l) b(T 1)HLZ u1. Upr—1
ox -0x, "7

V1= Ou1 0 Vp—1=— =0 Uy — 1_0
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o .
)z
-x?l---xf:’ll E Mhs(:ﬁ’_“
— T (JT—H)
3r=0 Pr

Here we used Lemma 9,

ar—l P1

hs(xla v >-'If'r71> =

Oxy -+ 0Tr_q

axrfl) .

1
Pr—1

>

a,—1=0

I'(s)

r—1 s ;
ay .Pi
(1= erat)

where s =1 + %, w, = e2V-lmpr )t = |y |ple\/jl¢”’l, T < ¢ =argx; <
m 1<I<r—1.

Now we concentrate on the only infinite series, with respect to the index j,,
hiding in the above Bergman kernel. Denote it by fjr, that is

) < T (1452 & ,
£, (@) = Z (_Z’T)fr(/\r) Hr — Z Jr + 1fr()‘r) tir,
i=0 T (%1) j=o Pr

_1
where ¢ =z, (1 -5 Wzalel) . We define f(j,) = J*p—“fr()\r). Note that
fr(A\r) is a polynomial of degree v,_; — u,—1 in j,, then in terms of Lemma 6

we can write
Vp_1—Up—1+1 .
' 3 ' 5 L(jr + v, + 1)

f(jr) = F(]r i 1) )

v,.=0

where lN)(()r) = f(-1) =0,

D(v+ 1)) = i:(—nk (”)f(—k 1), v=1,..., 01 —Up_1 + 1.

k=0 k

From Lemma 8,

i L(jr + v + 1)#’- ~ I(vp+1)
2T TG+ ) (=g
we have
Vp_1—Up_1+1
A =y (v, +1
G- Y g et

Vp (1 _ t)vr+1 :

v,=0
So the Bergman kernel in close form is

Vp—1—Up—1+1

mn v1 Vp—2—Ur—2 VUr—1
ey _ 1 r—1)7(r
Kg(w,0;w,0) = C E E E E E bgfl)...bgr—l)bg:)
v1=0u1=0 Vp—1=0  wup_1=0 v,.=0
r—1 au1+"'+u'r71 87‘71 1/p1—1
Mot ey o >
ul Ur—1 71 r—1
o Ox Oz, 0xy -+ 0xp_1 =



82 LIYOU ZHANG, AN WANG, AND QINGBIN LI

1/pr—1—1 (o, + 1)(1 — t)_(v,,,+1)

)1+1/pr’

-1
ap_1=0 (1— =g wital

where the parameter ¢ = x,.(1 — Z;:ll wf’xﬁ”)fﬁ, w; = e2™V =L This com-
pletes the proof of Theorem 2. O

Proof of Corollary 2. We consider only the case r = 1 for simplicity. In this
case, the domain is

Q}a = {(w,Z) € Cx Ri(m,n): |w?<det(I — ZZ")7s, p,q e R+}.

We know from Theorem 2 that the Bergman kernel is
1 mn o PR
T 2B D+ (L =)~ det(1 — 220D,
v=0
where t = z* = |w|?>det(I — ZZ*)~9/P. The constants b,(v = 0,1,2,...,mn)
are determined independently by

L(v+1)b, = i(—l)‘f (Z)f (—(kﬂ)q> :

k=0 p

KQ;('LU,Z;’LT],Z):

where f is Hua polynomial (3.3) of degree mn.

Applying formula (1.1) and let w = 0, then we get the weight Bergman
kernel for Cartan domain of the first type QR1(m,n) with respect to the weight
©(Z) = det(I — ZZ")4/?. That is

. 1 _
Ky o(Z,2) = —omy D bol(0+ D det(I — 220" ), .
v=0
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