DOI QR코드

DOI QR Code

생체 모방 로봇 물고기의 설계와 제어에 관한 연구

Design and Control of a Biomimetic Fish Robot

  • 김영진 (서울과학기술대학교 나노생산기술연구소) ;
  • 김승재 (서울과학기술대학교 나노생산기술연구소) ;
  • 양경선 (서울과학기술대학교 나노생산기술연구소) ;
  • 이정민 ((주)컨벡스) ;
  • 임충혁 (서울과학기술대학교 기계설계자동화공학부) ;
  • 김동환 (서울과학기술대학교 기계설계자동화공학부)
  • Kim, Young-Jin (Nano Manufacturing Device, Seoul National University of Science and Technology) ;
  • Kim, Seung-Jae (Nano Manufacturing Device, Seoul National University of Science and Technology) ;
  • Yang, Kyung-Sun (Nano Manufacturing Device, Seoul National University of Science and Technology) ;
  • Lee, Jeong-Min (Convex co., Ltd.) ;
  • Yim, Chung-Hyuk (School of Mechanical Design & Automation Engineering, Seoul National University of Science and Technology) ;
  • Kim, Dong-Hwan (School of Mechanical Design & Automation Engineering, Seoul National University of Science and Technology)
  • 투고 : 2010.06.16
  • 심사 : 2011.10.26
  • 발행 : 2012.01.01

초록

이 논문에서는 최소의 배터리를 소비하여 물고기 로봇을 구동하고, 물고기와 같은 유연한 운동을 할 수 있는 생체 모방(biomimetic) 물고기 로봇의 설계, 제작, 제어에 관하여 제안 하였다. 두 개 모터를 적용하여 물고기와 같이 유연하게 움직일 수 있는 방법을 제시 하였다. 중성 부력을 유지하는 방법과 빠르게 잠영하고, 방향을 전환 하기 위한 방법을 제시 하였다. 로봇 물고기의 꼬리는 유연한 움직임을 만들기 위하여 폴리머 재질을 사용하여 만들었다. 꼬리 내부는 관절과 강선으로 구성된다. 로봇 물고기에 척추에 해당하는 우레탄 골격과 관절을 이루는 핀에 연결된 강선을 당겨 꼬리에 정현파 명령을 주어 물고기와 비슷한 유영을 할 수 있도록 하였으며, 부력 조절 장치를 설치하였으며, 이 부력 조절 장치를 이용하여 물고기 로봇이 상승, 하강을 할 수 있도록 하였다.

This paper introduces the mechanical design, fabrication, and control of a biomimetic fish robot whose driving motions resemble a real fish's flexibility and movement. This robot uses two motors create flexible movement like that of a fish. Several schemes, such as neutral buoyancy, fast underwater swimming, and direction changes, are introduced. The tail of the fish robot is made of a polymer material for flexible movement. The interior of the tail contains a joint and a wire. A sine wave command was applied to the tail to produce motion resembling a real fish swimming, and a buoy control device was installed. The up and down motion of the robot fish was controlled using this device.

키워드

참고문헌

  1. Streitlien, K., Triantafyllow, G. S. and Triantafyllow, M. S., 1996, "Efficient Foil Propulsion Through Vertex Control," AIAJ., Vol. 34, pp. 2314-2319.
  2. Liu, J. D., Dukes Ian, Hu H. H., 2005, "Novel Mechatronics Design for a Robotic Fish," in IEEE/RSJ International Conference of Intelligent Robots and Systems, pp. 2077-2082.
  3. Anderson, J. M., 1996, "Vorticity Control for Efficient Propulsion," Ph.D. Dissertation. Massachusetts Inst. Technol./Woods Hole Oceanographic Inst. Joint Program. Woods Hole, MA .
  4. Heo, S., Wiguna, T, Gu, N. S. G. and Park, H.C., 2007, "Mechanical Design, Fabrication and Test of a Biomimetic Fish Robot Using LIPCA as an Artificial Muscle," Trans. of the KSME(A), Vol. 31, No. 1, pp. 36-42. https://doi.org/10.3795/KSME-A.2007.31.1.036
  5. Junzhi, Y. and Wang, L., 2005, "Parameter Optimization of Simplified Propulsive Model for Biomimetic Robot Fish," in IEEE International Conference on Robotics and Automation Barcelona, Spain, pp. 3306-3311.
  6. Sfakiotais, M., Lan, D. M. and Davies, J.B.C., 1999, "Review of Fish Swimming Modes for Aquatic Locomotion," IEEE Journal of Oceanic Engineering, Vol. 24, pp. 237-252. https://doi.org/10.1109/48.757275
  7. Tong, B., 2000 "Propulsive Mechanism of Fish's Undulatory Motion," Mechanics in Engineering, Vol. 22, pp. 69-74.
  8. Xia, D., Chen, W., Liu J. and Liu, Y., 2007, "System and Experimental Research on Biomimetic Robot Fish," in IEEE International Conference on Mechatronics and Automation August 5, pp.111-116.
  9. Chen, W., Xia, D. and Liu, J., 2008, "Modular Design and Realization of a Torpedo-Shape Robot Fish," Proceeding of 2008 IEEE International Conference on Mechatronics and Automation, pp.125-130.
  10. Vo T. Q., Kim, H. S., Cho, H. S., Dang, D. N. and Lee, B. R., 2009 "A Study on Optimization of Fish Robot Maximum Velocity Using The Combination of Genetic - Hill Climbing Algorithm," ICROS-SICE International Joint Conference, August 18-21, 2009, Fukuoka International Congress Center, Japan, pp. 2280-2285.
  11. Zhou, C., Cao, Z., Wang, S. and Tan, M., 2008, "The Dynamic Analysis of the Backward Swimming Mode for Biomimetic Carangiform Robotic Fish," IEEE/RSJ International Conference on Intelligent Robots and Systems Acropolis Convention Center Nice, France, Sep., 22-26, 2008, pp. 3072-3076.
  12. Ferdinand, P., Beer, E., Russell, J. and DeWolf, J.T., 2004 "Beer SI Mechanics of Materials" Third Edition in SI units, McGraw-Hill Inc., New York, pp. 211-223.
  13. Cengel, Y. A. and Cimbala, J. M., 2006. "Fluid Mechanics: Fundamentals & Applications." McGraw- Hill Inc., New York, pp. 525-570.
  14. Siegwart, R. and Wuhrmann, T., 2009. "Design of a Diving System for a Robotic Fish" Bachelor Thesis at ETH Zurich., pp. 21-25
  15. A product Data Sheet of AI Servo Motor RX-64 of ROBOTIS, pp.16-20.