DOI QR코드

DOI QR Code

The Approach for the Trade-off Study Between Field-effect Mobility and Current on/off Ratio in P3HT Field-effect Transistors

  • Jeong, Shin-Woo (Display and Nanosystem Laboratory, College of Engineering, Korea University) ;
  • Chang, Seong-Pil (Display and Nanosystem Laboratory, College of Engineering, Korea University) ;
  • Park, Jung-Ho (Display and Nanosystem Laboratory, College of Engineering, Korea University) ;
  • Oh, Tae-Yeon (Display and Nanosystem Laboratory, College of Engineering, Korea University) ;
  • Ju, Byeong-Kwon (Display and Nanosystem Laboratory, College of Engineering, Korea University)
  • Received : 2011.11.08
  • Accepted : 2011.12.22
  • Published : 2012.01.01

Abstract

Presented herein are the results of the study that was conducted on the electrical characteristics of organic field-effect transistors based on poly(3-hexylthiophene), particularly the thickness and annealing temperature of their active layer is varied. The changes in field-effect mobility and current on/off ratio were explored. It was observed that both increasing annealing temperature from $60^{\circ}C$ to $100^{\circ}C$ and various concentrations influence the trade-off relations between the mobility and current on/off ratio. The surface morphology of the 2-${\mu}m^2$ area with various thicknesses was scanned via atomic-forcemicroscopy(AFM) to verify the relationship between surface morphology, which is related to the thickness of the film, and device performance.

Keywords

References

  1. C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater., 14, 2 (2002).
  2. P. D. Byrne, Antonio F. M. H. Yoon, and T. J. Marks, Adv. Mater., 17, 1705 (2005). https://doi.org/10.1002/adma.200500517
  3. Z. Liu, J. H. Oh, M. E. Roberts, P. Wei, B. C. Paul, M. Okajima, Y. Nishi, and Z. Bao, Appl. Phys., 94, 203301 (2009).
  4. J A. Rogers, Z. Bao, A. Makjija, and P. Braun, Adv. Mater., 11, 9 (1999).
  5. E. J. Meijer, C. Tanase, P. W. M. Blom, E. V. Veenendaal, B. H. Huisman, D. M. D. Leeuw, and T. M. Klapwijk, Appl. Phys., 80, 3838 (2002).
  6. D. R. Hines, S. Mezhenny, M. Breban, E. D. Williams, V. W. Ballarotto, G. Esen, A. Southard, and M. S. Fuhrer, Appl. Phys., 86, 163101 (2005).
  7. J. H. Cho, J. Lee, Y. Xia, B. Kim, Y. He, M. J. Renn, T. P. Lodge, and C. D. Frisbie, Nature Mater., 7, 900 (2008). https://doi.org/10.1038/nmat2291
  8. J. Takeya, C. Goldman, S. Haas, K. P. Pernstich, B. Ketterer, and B. Batlogg, J. Appl. Phys., 94, 5800 (2003). https://doi.org/10.1063/1.1618919
  9. F. Dinelli, M. Murgia, Pablo Levy, M. Cavallini, and F. Biscarini, Phys. Rev. Lett., 92, 116802 (2004). https://doi.org/10.1103/PhysRevLett.92.116802
  10. M. Shtein, J. Mapel, J. B. Benziger, and S. R. Forrest, Appl. Phys. Lett., 81, 268 (2002). https://doi.org/10.1063/1.1491009
  11. A. Dodabalapur, L. Torsi, and H. E. Katz, Science, 268, 14 (1995). https://doi.org/10.1126/science.268.5207.14-a
  12. G. Li, V. Shrotriya, Y. Yao, and Y. Yang, J. Appl. Phys., 98, 043704 (2005). https://doi.org/10.1063/1.2008386
  13. A. Zen, J. Pflaum, S. Hirschmann, W. Zhuang, F. Jaiser, U. Asawapirom, J. P. Rabe, U. Scherf, and D. Neher, Adv. Mater., 14, 757 (2004).
  14. D. J. Gundlach, H. Klauk, C. D. Sheraw, C. C. Kuo, J. R. Huang, and T. N. Jackson, Tech. Dig. Int. Electron Devices Meet., 111 (1999).
  15. N. Kotani and S. Kawazu, Solid State Electron., 22, 63 (1978).
  16. D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, and D. G. Schlom, IEEE Electron Devices Lett., 18, 87 (1997). https://doi.org/10.1109/55.556089
  17. Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, Appl. Phys. Lett., 86, 063502 (2005). https://doi.org/10.1063/1.1861123