DOI QR코드

DOI QR Code

Biodistribution of 99mTc Tricarbonyl Glycine Oligomers

  • Jang, Beom-Su (Radioisotope Science Laboratory, Korea Atomic Energy Research Institute) ;
  • Lee, Joo-Sang (Radioisotope Science Laboratory, Korea Atomic Energy Research Institute) ;
  • Rho, Jong Kook (Radioisotope Science Laboratory, Korea Atomic Energy Research Institute) ;
  • Park, Sang Hyun (Radioisotope Science Laboratory, Korea Atomic Energy Research Institute)
  • 투고 : 2012.09.21
  • 심사 : 2012.12.03
  • 발행 : 2012.12.31

초록

$^{99m}Tc$ tricarbonyl glycine monomers, trimers, and pentamers were synthesized and evaluated for their radiolabeling and in vivo distribution characteristics. We synthesized a $^{99m}Tc$-tricarbonyl precursor with a low oxidation state (I). $^{99m}Tc(CO)_3(H_2O)_3^+$ was then made to react with monomeric and oligomeric glycine for the development of bifunctional chelating sequences for biomolecules. Labeling yields of $^{99m}Tc$-tricarbonyl glycine monomers and oligomers were checked by high-performance liquid chromatography. The labeling yields of $^{99m}Tc$-tricarbonyl glycine and glycine oligomers were more than 95%. We evaluated the characteristics of $^{99m}Tc$-tricarbonyl glycine oligomers by carrying out a lipophilicity test and an imaging study. The octanol-water partition coefficient of $^{99m}Tc$ tricarbonyl glycine oligomers indicated hydrophilic properties. Single-photon emission computed tomography imaging of $^{99m}Tc$-tricarbonyl glycine oligomers showed rapid renal excretion through the kidneys with a low uptake in the liver, especially of $^{99m}Tc$ tricarbonyl triglycine. Furthermore, we verified that the addition of triglycine to prototype biomolecules (AGRGDS and RRPYIL) results in the improvement of radiolabeling yield. From these results, we conclude that triglycine has good characteristics for use as a bifunctional chelating sequence for a $^{99m}Tc$-tricarbonyl-based biomolecular imaging probe.

키워드

참고문헌

  1. Alberto, R., Schibli, R., Schubiger, P.A., Abram, U. and Kaden, T.A. (1996). Reactions with the technetium and rhenium carbo-nyl complexes $(NEt_{4})_{2}$[$MX_{3}(CO)_{2}$]. Synthesis and structure of [Tc$(CN-Bu)_{3}$$(CO)_{3}$]$(NO_{3})$ and $(NEt_{4})$[$Tc_{2}$$(M-SCH_{2}CH_{2}OH)_{2}$$(CO)_{6}$]. Poly., 15, 1079-1089. https://doi.org/10.1016/0277-5387(95)00361-4
  2. Alberto, R., Schibli, R., Egli, A., Schubiger, P.A., Abram, U. and Kaden, T.A. (1998). A novel organometallic aqua complex of technetium for the labeling of biomolecules: synthesis of ${^{99m}Tc(OH_{2})_{3}}^{+}$ from $[^{99m}TcO_{4}]^{-}$ in aqueous solution and its reaction with a bifunctional ligand. J. Am. Chem. Soc., 120, 7987-7988. https://doi.org/10.1021/ja980745t
  3. Chen, W.J., Yen, C.L., Lo, S.T., Chen, K.T. and Lo, J.M. (2008). Direct $^{99m}Tc$ labeling of Herceptin (trastuzumab) by $^{99m}Tc$(I) tricarbonyl ion. Appl. Radiat. Isot., 66, 340-345. https://doi.org/10.1016/j.apradiso.2007.09.007
  4. Egli, A., Alberto, R., Tannahill, L., Schibli, R., Abram, U., Schaffland, A., Waibel, R., Tourwe, D., Jeannin, L., Iterbeke, K. and Schubiger, P.A. (1999). Organometallic 99mTc-aquaion labels peptide to an unprecedented high specific activity. J. Nucl. Med., 40, 1913-1917.
  5. Fischman, A.J., Babich, J.W. and Strauss, H.W. (1993). A ticket to ride: peptide radiopharmaceuticals. J. Nucl. Med., 34, 2253-2263.
  6. Lee, S., Xie, J. and Chen, X. (2010). Peptides and peptide hormones for molecular imaging and disease diagnosis. Chem. Rev., 110, 3087-3111. https://doi.org/10.1021/cr900361p
  7. Liu, G., Dou, S., He, J., Yin, D., Gupta, S., Zhang, S., Wang, Y., Rusckowski, M. and Hnatowich, D.J. (2006). Radiolabeling of MAG3-morpholino oligomers with $^{188}Re$ at high labeling efficiency and specific radioactivity for tumor pretargeting. Appl. Radiat. Isot., 64, 971-978. https://doi.org/10.1016/j.apradiso.2006.04.005
  8. Maresca, K.P., Marquis, J.C., Hillier, S.M., Lu, G., Femia, F.J., Zimmerman, C.N., Eckelman, W.C., Joyal, J.L. and Babich, J.W. (2010). Novel polar single amino acid chelates for technetium- 99m tricarbonyl-based radiopharmaceuticals with enhanced renal clearance: application to octreotide. Bioconjugate Chem., 21, 1032-1042. https://doi.org/10.1021/bc900517x
  9. McAfee, J.G. and Neumann, R.D. (1996). Radiolabeled peptides and other ligands for receptors overexpressed in tumor cells for imaging neoplasms. Nucl. Med. Biol., 23, 673-676. https://doi.org/10.1016/0969-8051(96)00068-6
  10. Park, S.H, Jang, B.S. and Park, K.B. (2005). Synthesis and biological characteristics of $^{99m}Tc$(I) tricarbonyl cysteine, a potential diagnostic for assessment of renal function. J. Labelled Compd. Radiopharm., 48, 63-73. https://doi.org/10.1002/jlcr.897
  11. Psimadas, D., Fani, M., Gourni, E., Loudos, G., Xanthopoulos, S., Zikos, C., Bouziotis, P. and Varvarigou, A.D. (2012). Synthesis and comparative assessment of a labeled RGD peptide bearing two different $^{99m}Tc$-tricarbonyl chelators for potential use as targeted radiopharmaceutical. Bioorg. Med. Chem., 20, 2549-2557. https://doi.org/10.1016/j.bmc.2012.02.051
  12. Reubi, J.C. (1995). Neuropeptide receptors in health and disease: the molecular basis for in vivo imaging. J. Nucl. Med., 36, 1825-1835.
  13. Schibli, R., Alberto, R., Abram, U., Egli, A., Schubiger, P.A. and Kaden, T.A. (1998). Structural and $^{99}Tc$-NMR investigations of complexes with fac-$[Tc(CO)_{3}]^{+}$ moieties and macrocyclicthioethers of various ring size: synthesis and X-ray structure of the complexes $fac-[Tc(9-ane-S_{3})(CO)_{3}]Br$, fac$fac-[Tc_{2}(tosylate)_{2}(18-ane-S_{6}(CO)_{6}]$ and $fac-[Tc_{2}-ane-S_{6}-OH)(CO)_{6}[tosylate]_{2}$. Inorg. Chem., 37, 3509-3516. https://doi.org/10.1021/ic980112f
  14. Schibli, R., Katti, K.V., Volkert, W.A. and Barnes, C.L. (2001). Development of novel water-soluble, organometallic compounds for potential use in nuclear medicine: systhesis, characterization, and (1)H and (31)P NMR investigations of the complexes $fac-[ReBr_{3}(CO)_{3}L]$(L=bis(bis(hydroxymethyl)phospino) ethane, bis(bis(hydroxymethyl)phosphine)bezene). Inorg. Chem., 40, 2358-2362. https://doi.org/10.1021/ic001284r
  15. Schibli, R., La Bella, R., Alberto, R., Garcia-Garayoa, E., Ortner, K., Abram, U. and Schubiger, P.A. (2000). Influence of the denticity of ligand systems on the in vitro and in vivo behavior of $^{99m}Tc$(I)-tricarbonyl complexes: a hint for the future functionalization of biomolecules. Bioconjugate Chem., 11, 345-351. https://doi.org/10.1021/bc990127h
  16. Taylor, A.T., Lipowska, M. and Marzilli, L.G. (2010). $^{99m}Tc$$(CO)_{3}$(NTA): a $^{99m}Tc$ renal tracer with pharmacokinetic properties comparable to those of $^{131}I$-OIH in healthy volunteers. J. Nucl. Med., 51, 391-396. https://doi.org/10.2967/jnumed.109.070813
  17. Vanderheyden, J.L., Liu, G., He, J., Patel, B., Tait, J.F. and Hnatowich, D.J. (2006). Evaluation of $^{99m}Tc$-$MAG_{3}$-annexin V: influence of the chelate on in vitro and in vivo properties in mice. Nucl. Med. Biol., 33, 135-144. https://doi.org/10.1016/j.nucmedbio.2005.09.002
  18. Wang, Y., Liu, X. and Hnatowich, D.J. (2007). An improved synthesis of NHS-$MAG_{3}$ for conjugation and radiolabeling of biomolecules with $^{99m}Tc$ at room temperature. Nat. Protoc., 2, 972-978. https://doi.org/10.1038/nprot.2007.144
  19. Zhang, Y.M., Liu, N., Zhu, Z.H., Rusckowski, M. and Hnatowich, D.J. (2000). Influence of different chelators (HYNIC, $MAG_{3}$ and DTPA) on tumor cell accumulation and mouse biodistribution of technetium-99m labeled to antisense DNA. Eur. J. Nucl. Med., 27, 1700-1707. https://doi.org/10.1007/s002590000343

피인용 문헌

  1. Labeling and biological evaluation of 99m Tc-tricarbonyl-chenodiol for hepatobiliary imaging vol.59, pp.5, 2017, https://doi.org/10.1134/S10663622170500149
  2. Radioiodination, diagnostic nuclear imaging and bioevaluation of olmesartan as a tracer for cardiac imaging vol.106, pp.10, 2018, https://doi.org/10.1515/ract-2018-2960