Abstract
A river is defined as the watercourse flowing through its channel, and the mapping tasks of a river plays an important role for the research on the topographic changes in the riparian zones and the research on the monitoring of flooding in its floodplain. However, the utilization of the ground surveying technologies is not efficient for the mapping tasks of a river due to the irregular surfaces of the riparian zones and the dynamic changes of water level of a river. Recently, the spatial information data sets are widely used for the coastal mapping tasks due to the acquisition of the topographic information without human accessibility. In this research, we tried to extract a river from the RapidEye imagery by using the ISODATA(Iterative Self_Organizing Data Analysis) classification algorithm with the two different parameters(NIR (Near Infra-Red) band and NDVI(Normalized Difference Vegetation Index)). First, the two different images(the NIR band image and the NDVI image) were generated from the RapidEye imagery. Second, the ISODATA algorithm were applied to each image and each river was generated in each image through the post-processing steps. River boundaries were also extracted from each classified image using the Sobel edge detection algorithm. Ground truths determined by the experienced expert are used for the assessment of the accuracy of an each generated river. Statistical results show that the extracted river using the NIR band has higher accuracies than the extracted river using the NDVI.
하천은 육지 표면에서 일정한 물길을 따라 흐르는 물줄기를 의미하며, 하천 매핑 작업은 하천유역의 지형 변화 연구 및 하천 유역의 홍수 모니터링 연구 등에 매우 중요한 역할을 한다. 그러나 하천의 수위변화로 인한 유역 내 지표면의 수위 및 유량의 불균일성 등으로 인하여, 기존의 지반조사 기술은 하천 매핑 작업에 효과적이지 않다. 공간 정보 자료는 해당 지역에 접근하지 않고도 해당 지역에 관한 지형적인 정보를 획득할 수 있어서, 하천 지형 조사 및 하천 측량 등 하천 유역의 지형연구에 굉장히 유용하게 쓰일 수 있다. 본 연구에서는, 각각의 다른 파라미터를 사용하여 영상분류 기법 중의 하나인 ISODATA(Iterative Self_Organizing Data Analysis) 분류기법을 적용하여 RapidEye 영상으로부터 하천을 추출하는 방법을 제시하였다. 우선, RapidEye 영상으로부터 NIR(Near InfraRed) 밴드 영상과 NDVI(Normalized Difference Vegetation Index) 영상을 생성한 뒤, 이를 각각의 파라미터로 설정한다. 생성된 각각의 영상에 ISODATA 기법을 적용한 뒤, 후처리 과정을 통하여 각각의 영상으로부터 하천을 추출하도록 한다. 각각의 영상에서 추출한 하천의 경계선 또한 Sobel 에지 추출 기법을 통하여 추출된다. 점검 점들을 이용하여 정확도 검증을 수행한 결과, NIR 밴드로부터 추출한 하천의 정확도가 NDVI 영상으로부터 추출한 하천의 정확도보다 더 높다는 것을 알 수 있다.