DOI QR코드

DOI QR Code

Antioxidative Activity of Smilax china L. Leaf Teas Fermented by Different Strains

균주에 따른 청미래덩굴잎 발효차의 항산화 활성

  • Lee, Sang-Il (Dept. of Food, Nutrition and Culinary Arts, Keimyung College) ;
  • Lee, Ye-Kyung (Center for Nutraceutical and Pharmaceutical Materials, Myongji University) ;
  • Kim, Soon-Dong (Center for Nutraceutical and Pharmaceutical Materials, Myongji University) ;
  • Kang, Yun Hwan (Center for Nutraceutical and Pharmaceutical Materials, Myongji University) ;
  • Suh, Joo Won (Center for Nutraceutical and Pharmaceutical Materials, Myongji University)
  • 이상일 (계명문화대학교 식품영양조리학부) ;
  • 이예경 (명지대학교 농생명바이오식의약소재개발사업단) ;
  • 김순동 (명지대학교 농생명바이오식의약소재개발사업단) ;
  • 강윤환 (명지대학교 농생명바이오식의약소재개발사업단) ;
  • 서주원 (명지대학교 농생명바이오식의약소재개발사업단)
  • Received : 2012.10.06
  • Accepted : 2012.11.08
  • Published : 2012.12.31

Abstract

To evaluate the functional characteristic and availability for drinking of the fermented Smilax china leaf tea by using different microbial species, various fermented leaf tea was prepared by non-fermentation (C), or the fermentation of Saccharomyces cerevisiae (S), Bacillus sp. (B), Bifidobacterium bifidus (L), Monascus pilosus (M) and Aspergilus oryzae (A), and sensory and antioxidant parameter of each brewed tea was observed. The color of the A tea was red, but the other teas were yellow in color. Furthermore, the aesthetic quality of the A and M tea was 3.95 and 3.30 point, respectively, and other teas (2.55~2.28) were similar to that of the C tea. TP of fermented tea water extract was lower than that of the C, although TF was not significantly different between the fermented and non-fermented tea. Especially, TF of the A tea was significantly lower than those of the other teas. The range of EDA ($1mg/m{\ell}$) of water and ethanol extracts of tea C and the fermented teas was 19.25~22.48%; however, tea A was only 8.04~12.49%. In addition, FRAP, FICA and LPOIA of teas were not significantly different between the fermented and non-fermented teas. On the other hand, XOIA and AOIA of tea ethanol extracts were slightly higher than those of water extracts. XOIA of water extract derived from the teas was 4.83~9.20%, while ethanol extract of these was 9.00~19.00%. However, XOIA of B and L teas water extract was not detected. Furthermore, AOIA of fermented tea water extract (30.17~48.52%) were lower than those of ethanol extract (44.09~66.93%). In this study, interestingly, antioxidant parameters, such as FRAP, FICA, LPOIA and AOIA, of the A tea water extract (0.1%) was higher than that of the other tea in spite of high decreasing rate in the contents of TP and TF. Therefore, above results imply the possibility of fermented Smilax china leaf tea as a functional food.

본 연구에서는 청미래덩굴(Smilax china L.) 잎을 이용한 기호성이 증진된 발효차 제조를 시도하였다. 균주로 Saccharomyces cerevisiae(S), 청국장으로부터 분리한 Bacillus속 혼합미생물(B), Bifidobacterium bifidus(L), Monascus pilosus(M) 및 Aspergilus oryzae(A)를 사용하여 발효차(S, B, L, M, A)를 제조하였으며, 발효시키지 않은 청미래덩굴잎(C)과의 품질특성과 항산화와 관련된 total polyphenol(TP) 및 total flavonoid(TF) 함량과 활성산소 소거계 활성으로 electron donating ability(EDA), ferric reducing antioxidant power(FRAP), ferrous iron chelating ability (FICA) 및 lipid peroxidation inhibitory activity(LPOIA)와 활성산소 생성계 효소인 xanthine oxidase의 inhibitory activity(XOIA) 및 aldehyde oxidase의 inhibitory activity(AOIA)의 변화를 조사하였다. 열수로 1% 농도로 우려낸 발효차의 색상은 A차는 적색을 띠었으나, 그 외의 모든 차는 황색을 띠었다. 차의 향, 맛, 밝기 및 종합적인 기호도는 A차 3.95점, M차 3.30점으로 평가되었으며, 그 외 S, B, L차는 2.55~2.28점으로 C차와 유사하였다. C차 열수 추출물의 TP 및 TF 함량은 각각 28.94 및 18.39 mg/g, 에탄올 추출물에서는 각각 34.97 및 34.44 mg/g 이었다. 발효차는 C차에 비하여 TP의 함량이 낮았으나, 에탄올 가용성 flavonoid 함량에는 큰 변화를 보이지 않았다. 특히 A차는 수용성 TF 함량과 에탄올 가용성 TP의 함량이 낮았다. 청미래덩굴잎 및 그 발효차 열수 및 에탄올 추출물의 EDA($1mg/m{\ell}$)는 19.25~22.48%이었으나, A차는 8.04~12.49%이었다. C차 열수 및 에탄올 추출물의 FRAP($Fe^{2+}\;{\mu}mole/g$ dry basis)는 4.38~5.84이었으며, S, B, L, M 및 A차와 대등하였다. FICA는 발효차 중에서는 A차가 높았으며, 여타 차는 발효차와 비발효차 간의 유의차가 없었다. LPOIA는 $200{\mu}g/m{\ell}$의 아주 낮은 농도에서 열수 추출물은 37.08~41.42%, 에탄올 추출물은 28.66~32.57%를 나타내었고, 열수 추출물보다 에탄올 추출물이 다소 높았으며, 차의 종류에 따른 유의차는 보이지 않았다. 열수 및 에탄올 추출물($1mg/m{\ell}$)의 XOIA 및 AOIA는 모두 에탄올 추출물에서 높은 경향을 보였다. 열수 추출물에서의 XOIA는 C, S, M 및 A차에서는 4.83~9.20%이었으나, B 및 L차에서는 나타나지 않았으며, 에탄올 추출물에서는 9.00~19.00%이었다. AOIA는 열수 추출물은 30.17~48.52%, 에탄올 추출물은 44.09~66.93으로 정도의 차이는 있으나, 발효차 에서도 비교적 높은 활성을 나타내었다. 이상의 결과, 청미래덩굴잎 발효차의 항산화 활성은 비발효차에 비하여 다소 감소하는 경향을 나타내며, 에탄올 추출물이 열수 추출물에 비하여 높은 활성을 나타내었다. 특히, 발효에 의하여 TP와 TF의 감소율이 높으나, 관능적 품질이 비교적 양호한 것으로 나타난 A차 열수 추출물(0.1%)에서도 FRAP, FICA, LPOIA 및 AOIA와 같은 항산화 지표들의 활성이 나타나, 기능성 발효차로서의 이용가능성이 높은 것으로 평가되었다.

Keywords

References

  1. Ali S, Pawa S, Naime M, Prasad R, Ahmad T, Farooqui H, Zafar H. 2008. Role of mammalian cytosolic molybdenum Fe-S flavin hydroxylases in hepatic injury. Life Sci 82:780-788 https://doi.org/10.1016/j.lfs.2008.01.011
  2. Arakawa H, Maeda M, Okubo S, Shimamura T. 2004. Role of hydrogen peroxide in bactericidal action of catechin. Biol Pharm Bull 27:277-281 https://doi.org/10.1248/bpb.27.277
  3. Bana JY, Choa SO, Koh SB, Song KS, Bae KW, Seong YH. 2006. Protection of amyloid protein (25-35)-induced neurotoxicity by methanol extract of Smilacis chinae rhizome in cultured rat cortical neurons. J Ethnopharmacol 106:230-237 https://doi.org/10.1016/j.jep.2005.12.034
  4. Banerjee A, Dasgupta N, De B. 2005. In vitro study of antioxidant activity of Syzygium cumini fruit. Food Chem 90: 727-733 https://doi.org/10.1016/j.foodchem.2004.04.033
  5. Barr JT, Jones JP. 2011. Inhibition of human liver aldehyde oxidase: Implications for potential drug-drug interactions. Drug Metab Dispos 39:2381-2386 https://doi.org/10.1124/dmd.111.041806
  6. Benzie IF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal Biochem 239:70-76 https://doi.org/10.1006/abio.1996.0292
  7. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 181:1199-1200 https://doi.org/10.1038/1811199a0
  8. Carr MC. 2003. The emergence of the metabolic syndrome with menopause. J Clin Endocrinol Metab 88:2404-2411 https://doi.org/10.1210/jc.2003-030242
  9. Cha BC, Lee EH. 2007. Antioxidant activities of flavonoids from the leaves of Smilax china Linne. Kor J Pharmacogn 38: 31-36
  10. Chen CH, Chan HC, Chang YN, Liu BL, Chen YS. 2000. Effects of bacterial strains on sensory quality of Pu-erh tea in an improved pile-fermentation process. J Sens Stud 24: 534-553
  11. Chen Y, Wang Q, Li B, Li L, Pan LN, Huang Y. 2008. Study on identification and quality for Smilax china L. of compound gout granules. Asia-Pacific Traditional Medicine 4:237-239
  12. Chena L, Yina H, Lanb Z, Maa S, Zhanga C, Yanga Z, Li P, Linc B. 2011. Anti-hyperuricemic and nephroprotective effects of Smilax china L. J Ethnopharmacol 135:399-405 https://doi.org/10.1016/j.jep.2011.03.033
  13. Choi CH, Song ES, Kim SJ, Kang MH. 2003. Antioxidative activities of Castanea crenata Flos. methanol extracts. Korean J Food Sci Technol 35:1216-1220
  14. Choi HY. 2004. Antimicrobial effect of ethanol extract of Smilax china leaf. Korean J Sanitation 19:22-30
  15. Dambrova M, Uhlen S, Welch CJ, Wikberg JES. 1998. Identification of an N-hydroxyguanidine reducing activity of xanthine oxidase. Eur J Biochem 257:178-184 https://doi.org/10.1046/j.1432-1327.1998.2570178.x
  16. De Haan JB, Cristiano F, Iannello RC, Kola I. 1995. Cu/Znsuperoxide dismutase and glutathione peroxidase during aging. Biochem Mol Biol Int 35:1281-1297
  17. Dinis TCP, Madeira VMC, Almeida LM. 1994. Action of phenolic derivatives (acetaminophen, salicylate, and 5-amino salicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophys 315: 161-169 https://doi.org/10.1006/abbi.1994.1485
  18. Fabre G, Seither R, Goldman D. 1986. Hydroxylation of 4-aminoantifolates by partially purified aldehyde oxidase from rabbit liver. Biochem Pharmacol 35:1325-1330 https://doi.org/10.1016/0006-2952(86)90277-7
  19. Garattini E, Fratelli M, Terao M. 2009. The mammalian aldehyde oxidase gene family. Human Genomics 4:119-130
  20. Halliwell B. 2006. Reactive oxygen species and the central nervous system. J Neurochem 59:1609-1623
  21. Hashim MS, Lincy S, Remya V, Teena M, Anila L. 2005. Effect of polyphenolic compounds from Coriandrum sativum on $H_2O_2$-induced oxidative stress in human lymphocytes. Food Chem 92:653-660 https://doi.org/10.1016/j.foodchem.2004.08.027
  22. Herbert A, Jeol LS. 1993. Sensory Evaluation Practices. 2nd ed. pp.68-94. Academic Press
  23. Holasova M, Fiedlerova V, Smrcinova H, Orsak M, Lachman J, Vavreinova S. 2002. Buckwheat the source of antioxidant activity in functional foods. Food Res Int 35:207-211 https://doi.org/10.1016/S0963-9969(01)00185-5
  24. Hur SJ, Ye BW, Lee JL, Ha YL, Park GB, Joo ST. 2004. Effect of conjugated linoleic acid on color and lipid oxidation of beef patties during cold storage. Meat Sci 66:771-775 https://doi.org/10.1016/S0309-1740(03)00104-9
  25. Itoh K. 2009. Individual and strain differences of aldehyde oxidase in the rat. Yakugaku Zasshi 129:1487-1493 https://doi.org/10.1248/yakushi.129.1487
  26. Jeon SM, Bok SH, Jang MK, Lee MK, Nam KT, Park YB, Rhee SJ, Choi MS. 2001. Antioxidative activity of naringin and lovastatin in high cholesterol-fed rabbits. Life Sci 69:2855- 2866 https://doi.org/10.1016/S0024-3205(01)01363-7
  27. Kang YH, Park YK, Oh SR, Moon KD. 1995. Studies on the physiological functionality of pine needle and mugwort extracts. Korean J Food Sci Technol 27:978-984
  28. Kato S, Kawase T, Alderman J, Inatomi N, Lieber C. 1990. Role of xanthine oxidase in ethanol-induced lipid peroxidation in rats. Gastroenterology 98:203-210 https://doi.org/10.1016/0016-5085(90)91311-S
  29. Kitamura S, Sugihara K, Ohta S. 2006. Drug-metabolizing ability of molybdenum hydroxylases. Drug Metab Pharmacokinet 21:83-98 https://doi.org/10.2133/dmpk.21.83
  30. Ko MS, Yang JB. 2011. Antioxidant and antimicrobial activities of Smilax china leaf extracts. Korean J Food Preserv 18: 764-772 https://doi.org/10.11002/kjfp.2011.18.5.764
  31. Krenitsky TA. 1978. Aldehyde oxidase and xanthine oxidasefunctional and evolutionary relationships. Biochem Pharmacol 27:2763-2764 https://doi.org/10.1016/0006-2952(78)90186-7
  32. Kundu TK, Hille R, Velayutham M, Zweier JL. 2007. Characterization of superoxide production from aldehyde oxidase: an important source of oxidants in biological tissues. Arch Biochem Biophys 460:113-121 https://doi.org/10.1016/j.abb.2006.12.032
  33. Lee MY, No HK, Kim SD, Prinyawiwatkul W. 2007. Quality of Chungkukjangs prepared with various Bacillus strains. Int J Food Sci Technol 42:587-592 https://doi.org/10.1111/j.1365-2621.2006.01279.x
  34. Lee YK, Lee SI, Kim JS, Yang SH, Lee IA, Kim SD, Suh JW. 2012. Antioxidant activity of green tea fermented with Monascus pilosus. J Appl Biol Chem 55:19-25 https://doi.org/10.3839/jabc.2011.054
  35. Maia L, Mira L. 2002. Xanthine oxidase and aldehyde oxidase: A simple procedure for the simultaneous purification from rat liver. Arch Biochem Biophys 400:48-53 https://doi.org/10.1006/abbi.2002.2781
  36. Meda A, Lamien CE, Romito M, Millogo J, Nacoulma OG. 2005. Determination of the total phenolic, flavonoid and proline contents in burkina fasan honey, as well as their radical scavenging activity. Food Chem 91:571-577 https://doi.org/10.1016/j.foodchem.2004.10.006
  37. Minussi RC, Rossi M, Bologna L, Cordi L, Rotilio D, Pastore GM, Duran N. 2003. Phenolic compounds and total antioxidant potential of commercial wines. Food Chem 82:409-416 https://doi.org/10.1016/S0308-8146(02)00590-3
  38. Mira L, Maia L, Barreira L, Manso CF. 1995. Evidence for free radical generation due to NADH oxidation by aldehyde oxidase during ethanol metabolism. Arch Biochem Biophys 318:53-58 https://doi.org/10.1006/abbi.1995.1203
  39. Moon SH, Lee MK, Chae KS. 2001. Inhibitory effects of the solvent fractions from persimmon leaves on xanthine oxidase activity. Kor J Food Nutr 14:120-125
  40. Moriwaki Y, Yamamoto T, Nasako Y, Takahashi S, Suda M, Hiroishi K, Hada T, Higashino K. 1993. In vitro oxidation of pyrazinamide and allopurinol by rat liver aldehyde oxidase. Biochem Pharmacol 46:975-981 https://doi.org/10.1016/0006-2952(93)90661-F
  41. Neumeier M, Weigert J, Schaaffler A, Weiss TS, Schmidl C, Buuttner R, Bollheimer C, Aslanidis C, Schoolmerich J, Buechler C. 2006. Aldehyde oxidase 1 is highly abundant in hepatic steatosis and is downregulated by adiponectin and fenofibric acid in hepatocytes in vitro. Biochem Biophys Res Commun 350:731-735 https://doi.org/10.1016/j.bbrc.2006.09.101
  42. Ngure MF, Wanyokob JK, Mahungua SM, Shitandia AA. 2009. Catechins depletion patterns in relation to theaflavin and thearubigins formation. Food Chem 115:8-14 https://doi.org/10.1016/j.foodchem.2008.10.006
  43. Osawa T. 1994. Novel natural antioxidant for utilization in food and biological system. In Postharvest Biochemistry of Plant Food Material in the Tropics. pp.241-251. Japan Scientific Societies Press
  44. Owuor PO, Obanda M, Nyirenda HE, Mphangwe NIK, Wright LP, Apostolides Z. 2006. The relationship between some chemical parameters and sensory evaluations for plain black tea (Camellia sinensis) produced in Kenya and comparison with similar teas from Malawi and South Africa. Food Chem 97:644-653 https://doi.org/10.1016/j.foodchem.2005.04.027
  45. Park GY, Lee SJ, Lim JG. 1997. Effects of green tea catechin on cytochrome p450, xanthine oxidase activities in liver and liver damage in streptozveocin induced diabetic rats. J Korean Soc Food Sci Nutr 26:901-907
  46. Pirouzpanah S, Hanaee J, Razavieh SV, Rashidi MR. 2009. Inhibitory effects of flavonoids on aldehyde oxidase activity. J Enzyme Inhib Med Chem 24:14-21 https://doi.org/10.1080/14756360701841301
  47. Pirouzpanah S, Rashidi MR, Delazar A, Razavieh SV, Hamidi A. 2006. Inhibitory effects of Ruta graveolens L. extract on guinea pig liver aldehyde oxidase. Chem Pharm Bull (Tokyo). 54:9-13 https://doi.org/10.1248/cpb.54.9
  48. Rajagopalan KV, Fridovich I, Handler P. 1962. Hepatic aldehyde oxidase. I. Purification and properties. J Biol Chem 237: 922-928
  49. Rashidi MR, Beedham C, Smith JS, Davaran S. 2007. In vitro study of 6-mercaptopurine oxidation catalysed by aldehyde oxidase and xanthine oxidase. Drug Metab Pharmacok 22: 299-306 https://doi.org/10.2133/dmpk.22.299
  50. Rashidi MR, Nazemiyeh H. 2010. Inhibitory effects of flavonoids on molybdenum hydroxylases activity. Expert Opin Drug Metab Toxicol 6:133-152 https://doi.org/10.1517/17425250903426164
  51. Reiter S, Simmonds HA, Zöollner N, Braun SL, Knedel M. 1990. Demonstration of a combined deficiency of xanthine oxidase and aldehyde oxidase in xanthinuric patients not forming oxipurinol. Clin Chim Acta 187:221-234 https://doi.org/10.1016/0009-8981(90)90107-4
  52. Ruan HL, Zhang YH, Zhao W, Tan YF, Sun ZL, Wu JZ. 2002. Studies on the chemical constituents of Smilax china L. Natural Product Research and Development 14:35-36
  53. Sahinoglu T, Stevens CR, Bhatt B, Blake DR. 1996. The role of reactive oxygen species in inflammatory disease: Evaluation of methodology. Methods 9:628-634 https://doi.org/10.1006/meth.1996.0069
  54. Saieed P, Reza RM, Abbas D, Seyyedvali R, Aliasghar H. 2006. Inhibitory effects of Ruta graveolens L. extract on guinea pig liver aldehyde oxidase. Chem Pharm Bull 54:9-13 https://doi.org/10.1248/cpb.54.9
  55. Shao B, Guo H, Cui Y, Ye M, Han J, Guo D. 2007. Steroidal saponins from Smilax china and their anti-inflammatory activities. Phytochem 68:623-630 https://doi.org/10.1016/j.phytochem.2006.10.026
  56. Shaw S, Jayatilleke E. 1990. The role of aldehyde oxidase in ethanol-induced hepatic lipid peroxidation in the rat. Biochem J 268:579-583 https://doi.org/10.1042/bj2680579
  57. Shu XS, Gao ZH, Yang XL. 2006. Anti-inflammatory and antinociceptive activities of Smilax china L. aqueous extract. J Ethnopharmacol 103:327-32 https://doi.org/10.1016/j.jep.2005.08.004
  58. Song HS, Park YH, Jung SH, Kim DP, Jung YH, Lee MK, Moon KY. 2006. Antioxidant activity of extracts from Smilax china root. J Korean Soc Food Sci Nutr 35:1133-1138 https://doi.org/10.3746/jkfn.2006.35.9.1133
  59. Stirpe F, Della Corte E. 1969. The regulation of rat liver xanthine oxidase. Conversion in vitro of the enzyme activity from dehydrogenase (type D) to oxidase (type O). J Biol Chem 244:3855-3863
  60. Stoddart AM, Levine WG. 1992. Azoreductase activity by purified rabbit liver aldehyde oxidase. Biochem Pharmacol 43:2227- 2235 https://doi.org/10.1016/0006-2952(92)90182-I
  61. Tayama Y, Sugihara K, Sanoh S, Miyake K, Morita S, Kitamura S, Ohta S. 2010. Effect of tea beverages on aldehyde oxidase activity. Drug Metab Pharmacokinet 26:94-101
  62. Torel J, Gillard J, Gillard P. 1986. Antioxidant activity of flavonoids and reactivity with peroxy radical. Phytochem 25:383-385 https://doi.org/10.1016/S0031-9422(00)85485-0
  63. Turner NA, Doyle WA, Ventom AM, Bray RC. 1995. Properties of rabbit liver aldehyde oxidase and the relationship of the enzyme to xanthine oxidase and dehydrogenase. Eur J Biochem 232:646-657 https://doi.org/10.1111/j.1432-1033.1995.tb20856.x
  64. Ueda O, Sugihara K, Ohta S, Kitamura S. 2005. Involvement of molybdenum hydroxylases in reductive metabolism of nitro polycyclic aromatic hydrocarbons in mammalian skin. Drug Metab Dispos 33:1312-1318 https://doi.org/10.1124/dmd.105.005306
  65. Weigert J, Neumeier M, Bauer S, Mages W, Schnitzbauer AA, Obed A, Grooschl B, Hartmann A, Schaaffler A, Aslanidis C, Schoolmerich J, Buechler C. 2008. Small-interference RNA-mediated knock-down of aldehyde oxidase 1 in 3T3-L1 cells impairs adipogenesis and adiponectin release. FEBS Lett 582:2965-2972 https://doi.org/10.1016/j.febslet.2008.07.034
  66. Wright RM, McManaman JL, Repine JE. 1999. Alcohol-induced breast cancer: a proposed mechanism. Free Rad Biol Med 26:348-354 https://doi.org/10.1016/S0891-5849(98)00204-4
  67. Wright RM, Repine JE. 1997. The human molybdenum hydroxylase gene family: co-conspirators in metabolic free-radical generation and disease. Biochem Soc Trans 25:799-804 https://doi.org/10.1042/bst0250799
  68. Wu LS, Wang, XJ, Wang H, Yang HW, Jia AQ, Ding Q. 2010. Cytotoxic polyphenols against breast tumor cell in Smilax china L. J Ethnopharmacol 130:460-464 https://doi.org/10.1016/j.jep.2010.05.032
  69. Xu Y, Liang JY, Zou ZM. 2008. Studies on chemical constituents of rhizomes of Smilax china L. China. J Chinese Materia Medica 21:119-121
  70. Yamaguchi Y, Matsumura T, Ichida K, Okamoto K, Nishino T. 2007. Human xanthine oxidase changes its substrate specificity to aldehyde oxidase type upon mutation of amino acid residues in the active site: roles of active site residues in binding and activation of purine substrate. J Biochem 141:513-524 https://doi.org/10.1093/jb/mvm053
  71. Yee SB, Pritsos CA. 1997. Comparison of oxygen radical generation from the reductive activation of doxorubicin, streptonigrin, and menadione by xanthine oxidase and xanthine dehydrogenase. Arch Biochem Biophys 347:235-241 https://doi.org/10.1006/abbi.1997.0340
  72. Zuo YG, Chen H, Deng YW. 2002. Simultaneous determination of catechins, caffeine and gallic acids in green, oolong, black and pu-erh teas using HPLC with a photodiode array detector. Talanta 57:307-313 https://doi.org/10.1016/S0039-9140(02)00030-9

Cited by

  1. Establishment of hot water extraction conditions for optimization of fermented Smilax china L. using response surface methodology vol.20, pp.5, 2013, https://doi.org/10.11002/kjfp.2013.20.5.668
  2. Supplementation of standardized extract from fermented Smilax china L. leaf containing secondary metabolites moderated diet-induced obesity by modulating the activity antioxidant enzymes and hepatic lipogenesis vol.41, pp.3, 2017, https://doi.org/10.1111/jfbc.12357
  3. A Comparison of Antioxidant Effects among Non-fermented and Fermented Columbian Coffee, and Luwak Coffee Beans vol.30, pp.6, 2014, https://doi.org/10.9724/kfcs.2014.30.6.757
  4. Comparison of antioxidant, α-glucosidase inhibition and anti-inflammatory activities of the leaf and root extracts ofSmilax chinaL. vol.46, pp.4, 2013, https://doi.org/10.4163/jnh.2013.46.4.315
  5. Microbial bioconversion and processing methods enhance the phenolic acid and flavonoids and the radical scavenging capacity ofSmilax chinaL. leaf vol.96, pp.3, 2016, https://doi.org/10.1002/jsfa.7160
  6. Consumption of Han-sik and its Association with Socioeconomic Status among Filipino Immigrant Women: the Filipino Women's Diet and Health Study (FiLWHEL) vol.23, pp.6, 2018, https://doi.org/10.5720/kjcn.2018.23.6.475
  7. 경기도와 제주도 야생화들로부터 효모의 분리, 동정 및 항통풍성 Xanthine oxidase 저해물질의 생산 vol.41, pp.4, 2012, https://doi.org/10.4014/kjmb.1309.09002
  8. 발효 청미래덩굴잎 용매 추출물 및 분획물의 xanthine 및 aldehyde oxidase 저해활성과 항고요산혈증 효과 vol.57, pp.1, 2012, https://doi.org/10.3839/jabc.2014.009