DOI QR코드

DOI QR Code

Comparing Farming Methods in Pollutant runoff loads from Paddy Fields using the CREAMS-PADDY Model

영농방법에 따른 논에서의 배출부하량 모의

  • Song, Jung-Hun (Department of Landscape Architecture and Rural systems Engineering, Seoul National University) ;
  • Kang, Moon-Seong (Department of Landscape Architecture and Rural systems Engineering, Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Song, In-Hong (Research Institute for Agriculture and Life Sciences, College of Agriculture & Life Sciences, Seoul National University) ;
  • Jang, Jeong-Ryeol (Rural Research Institute, Korea Rural Community Corporation)
  • 송정헌 (서울대학교 생태조경.지역시스템공학부) ;
  • 강문성 (서울대학교 조경.지역시스템공학부, 농업생명과학연구원) ;
  • 송인홍 (서울대학교 농업생명과학연구원) ;
  • 장정렬 (한국농어촌공사 농어촌연구원)
  • Received : 2012.10.16
  • Accepted : 2012.11.17
  • Published : 2012.12.31

Abstract

BACKGROUND: For Non-Point Source(NPS) loads reduction, pollutant loads need to be quantified for major farming methods. The objective of this study was to evaluate impacts of farming methods on NPS pollutant loads from a paddy rice field during the growing season. METHODS AND RESULTS: The height of drainage outlet, amount of fertilizer, irrigation water quality were considered as farming factors for scenarios development. The control was derived from conventional farming methods and four different scenarios were developed based combination of farming factors. A field scale model, CREAMS-PADDY(Chemicals, Runoff, and Erosion from Agricultural Management Systems for PADDY), was used to calculate pollutant nutrient loads. The data collected from an experimental plot located downstream of the Idong reservoir were used for model calibration and validation. The simulation results agreed well with observed values during the calibration and validation periods. The calibrated model was used to evaluate farming scenarios in terms of NPS loads. Pollutant loads for T-N, T-P were reduced by 5~62%, 8~37% with increasing the height of drainage outlet from 100 mm of 100 mm, respectively. When amount of fertilizer was changed from standard to conventional, T-N, T-P pollutant loads were reduced by 0~22%, 0~24%. Irrigation water quality below water criteria IV of reservoir increased T-N of 9~65%, T-P of 9~47% in comparison with conventional. CONCLUSION(S): The results indicated that applying increased the height of drainage after midsummer drainage, standard fertilization level during non-rainy seasons, irrigation water quality below water criteria IV of reservoir were effective farming methods to reduce NPS pollutant loads from paddy in Korea.

논은 지역이나 토양, 기후 특성, 오염원 종류, 관개 및 시비 등의 경작방법에 따라 배출 양상이 다양하다. 특히, 시비방법 개선, 효율적인 물관리 등 영농방법 개선을 통한 비점부하 저감이 중요하다. 본 연구에서는 담수논을 대상으로 물꼬높이, 시비량, 관개수 수질에 따른 배출부하량 저감효과를 평가하기 위해, 시험포장의 물수지 및 물질수지 분석자료를 이용하여 CREAMS-PADDY 모형을 보정과 검정을 하고, 영농관리 시나리오를 적용하여 그 결과를 평가하였다. 영농관리 시나리오는 선행연구를 조사하여 배출부하량 저감을 만족하는 동시에 벼의 수확량 저하를 초래하지 않도록 4개의 시나리오로 개발하였고, 대조군은 관행농업을 반영하여 구성하였다. CREAMS-PADDY 모형과 HOMWRS 모형을 연계하고, 과거 기상자료를 이용하여 1981~2010년 영농기의 배출부하량 모의가 가능하도록 모형을 구축하였다. 모형의 보정 및 검정을 위하여 서울대학교 이동저수지 관개논 시험포장에의 물수지 및 물질수지 분석 자료를 이용하였고, 보정 결과 논물 총질소 및 총인의 결정계수는 0.95, 0.84, 모형의 효율지수는 0.95, 0.73으로, 검정 결과 논물 총질소 및 총인의 결정계수는 0.97, 0.85, 모형의 효율지수는 0.91, 0.84로 비교적 높게 나타났다. 영농관리 시나리오 적용 결과 중간낙수 이후 물꼬를 50 mm 증가시켰을 때 배출부하량은 대조군 대비 T-N 1~34%, T-P 5~21% 저감되는 것으로 나타났고, 100 mm 증가시켰을 때 대조군 대비 T-N 5~62%, T-P 8~37% 저감되는 것으로 나타났다. 관행시비량에서 표준시비량으로 시비량을 삭감시 배출부하량은 대조군 대비 T-N 0~16%, T-P 0~9% 저감되는 것으로 나타났으며, 배출부하량 저감양상은 시비직후 강우의 발생유무에 따라 크게 달라지는 것으로 나타났다. 관개수 수질을 호소수 수질환경기준인 4등급을 초과하는 수준으로 관개하는 경우 배출부하량은 대조군 대비 T-N 9~65%, T-P는 9~47% 증가하는 것으로 나타났다. 영양물질의 농도가 높은 관개수가 유입될 경우 논은 수질을 정화하는 경향을 보였다. 시나리오를 종합하면 영농초기의 물꼬높이를 낮게 유지하고, 중간낙수 이후 물꼬를 높게 유지하며, 비료는 강우가 발생하지 않는 시기에 표준시비량으로 시비하고, 호소수 수질환경기준인 4등급을 만족하는 관개수를 이용하였을 경우 논에서의 비점오염 관리에 가장 효과적인 것으로 나타났다. 하지만 고농도의 영양물질이 함유된 관개수를 농업용수로 이용할 경우 수계 전체의 배출부하량에 저감에 있어 효과적인 것으로 나타났다. 본 연구는 현장 실험 이전의 기초 자료로 사용될 수 있을 것으로 사료된다.

Keywords

References

  1. Anbumozhi, V., Yamaji, E., Tabuchi, T., 1998. Rice crop growth and yield as influenced by changes in ponding water depth, water regime and fertigation level, Agri. Water Manage. 37, 241-253. https://doi.org/10.1016/S0378-3774(98)00041-9
  2. Chin, Y. M., Park, S. W., Kim, S. M., Kang, M. S., Kang, M. G., 2002. Nutrient loads estimation at paddy field using CREAMS-PADDY model, J. Korean Sciety. Rural Plan. 8(1), 60-68.
  3. Cho, J. Y., Han, K. W., Choi, J. K., Kim, Y. J., Yoon, K. S., 2002. N and P losses from a paddy field plot in central Korea, Soil Sci. Plant Nutr. 48, 301-306. https://doi.org/10.1080/00380768.2002.10409205
  4. Choi, J. K., Son, J. G., Yoon, K. S., Lee, H. J., Kim, Y. J., 2012. Runoff characteristics in paddy fields using cow manure compost fertilizer, J. Korean Sciety. Agri. Eng. 54(3), 29-36.
  5. Choi, J. S., Won, J. G., Ahn, D. J., Park, S. G., Lee, S. P., 2004. Growth and Yield of Rice by Field Water Management for Water-Saving Irrigation, Korean J. Crop Sci. 49(6), 441-446.
  6. David, R. L., Gregory, M. J., 1999. Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimate model validation, Water Resour. Res. 35(1), 233-241. https://doi.org/10.1029/1998WR900018
  7. Han, K. H., 2011. Characteristics of non-point Sources pollutant loads at paddy plot located at the valley watershed during irrigation periods, Koran National Commi. Irri. and Drain. 18(1), 94-102.
  8. Hwang, H. S., Yoon, C. G., Jeon, J. H., Kim, B. H., 2002. Water and nutrient mass balance in paddy field with groundwater irrigation in low-rainfall year, J. Korean Sciety. Agri. 44(4), 39-50.
  9. Jang, T. I., Lee, S. B., Seong, C. H., Lee H. P., Park, S. W., 2010. Safe application of reclaimed water reuse for agriculture in Korea, Paddy Water Environ. 2010(8), 227-233
  10. Jeon, J. H., Yoon, C. G., Ham, J. H., Jung, K. W., 2004. Model development for surface drainage loadings estimates from paddy rice fields, Paddy Water Environ. 3(2), 93-101.
  11. Jeon, J. H., Yoon, C. G., Hwang, H. S., Yoon, K. S., 2003. Water quality model development for loadings estimates from paddy fields, Korean J. Limnol. 36(3), 344-355.
  12. Jung, K. W., Kim, H. K., Jang, T. I., Kim, S. M., Park, S. W., 2011. Assessing grain quality properties of reclaimed wastewater irrigation, J. Agri. Life. Sci. 44(6), 183-189.
  13. Kang, J. R., Kim, J. T., Beg, L. Y., Kim, J. I., 2005. Effect of Nitrogen Fertilizer Rates on Rice Quality in Mid-mountainous Area, Korean J. Crop Sci. 50(S), 37-40.
  14. Kang, M. S., 2010. Development of improved farming methods to reduce agricultural non-point source pollution, M. Korean Sciety. Agri. Eng. 52(4), 40-50.
  15. Kang, Y. S., Lee, J. H., Kim, J. I., Lee, J. S., 1997. Influence of Silicate Application on Rice Grain Quality, Korean J. Crop Sci. 42(2), 800-804.
  16. Kim, J. I., Choi, H. C., Kim K. H., Ahn, Jong. Kuk., Park, N. B., Park, D. S., Kim, C. S., Lee, J. Y., Kim, J. K., 2009. Varietal response to grain quality and palatability of cooked rice Influenced by different nitrogen applications, Korean J. Crop Sci. 54(1), 13-23.
  17. Lee, T. H., 2011, Introduction of HOMWRS : Hydrological Operation Model for Water Resources System, M. Korea Water Res. Assoc. 44(7), 88-91.
  18. Lee, Y. H., Sonn, Y. K., Lee, S. T., Heo, J. Y., Kim, M.K., Kim, E. S., Song, W.D., Zhang, Y. S., Jeon, W. T., Oh, Y. S., 2012. Topographical chemical properties of paddy soils in Gyeongnam province, Korean J. Soil Sci. Fert. 45(2), 143-148. https://doi.org/10.7745/KJSSF.2012.45.2.143
  19. Mills, H. J., Benton, J., 1979. Nutrient deficiencies and toxicities in plants: Nitrogen, J. of plant nutri. 1(2), 101-122. https://doi.org/10.1080/01904167909362704
  20. Mishra, A., Ghorai, A. K., Singh, S. R., 1998. Rainwater, soil and nutrient conservation in rainfed rice lands in Eastern India, Agri. Water Manage. 38(1), 45-57. https://doi.org/10.1016/S0378-3774(98)00052-3
  21. Nash J. E., Sutcliffe, J. V., 1970. River flow forecasting through conceptual models part I-A discussion of principles, J. Hydrology 10, 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  22. Seo, C. S., Park, S. W., Im, S. J., Yoon, K. S., Kim, S. M., Kang, M. S., 2002. Development of CREAMS- PADDY Model for Simulating Pollutants from Irrigated Paddies, J. Korean Sciety. Agri. Eng. 44(3), 146-156.
  23. Seong, C. H., Kim, S. J., Kim, S. M., Kim, S. M., 2011. Analysis of Wastewater Reuse Effect on Field-Scale Water Quality, J. Korean Sciety. Agri. 53(4), 59-65. https://doi.org/10.5389/KSAE.2011.53.4.059
  24. Sohn, S. H., Chung, S. O., 2002. Effects of ponding depth treatment on water balance in paddy fields, J. Korean Sciety. Agri. Eng. 44(2), 67-74.
  25. Wischmeier W. H., Smith, D. D., 1978. Predicting rainfall erosion losses-A guide to conservation planning, USDA agriculture handbook No. 537. United States Department of Agriculture (USDA), Agricultural Research Service, Washington.
  26. Yoo, S. H., Choi, J. Y., Jang, M. W., 2006. Estimation of Paddy Rice Crop Coefficients for FAO Penmann- Monteith and Modified Penmann Method, J. Korean Sciety. Agri. 48(1), 13-23.
  27. Yoon, C. G., Hwang, H. S., Jung, K. W., Jeon, J. H., 2003. Effects of Ponded-Water Depth and Reclaimed Wastewater Irrigation on Paddy Rice Culture, J. Korean Sciety. Agri. 45(4), 55-65.
  28. Won, J. G., Choi, C. D., Lee, W. H., Kim, C. R., Lee, S. C., 1997. Influence of deep flooding on rice growth and yield in dry-seeded paddy field, Korean J. Crop Sci. 42(2), 166-172.

Cited by

  1. Response of Nutrient Dynamics with Topography during the Rice Cultivation in Paddy Field vol.49, pp.4, 2016, https://doi.org/10.7745/KJSSF.2016.49.4.310
  2. Effects of Controlled Drainage and Slow-release Fertilizer on Nutrient Pollutant Loads from Paddy Fields vol.58, pp.1, 2016, https://doi.org/10.5389/KSAE.2016.58.1.001
  3. Characteristics of Water Budget Components in Paddy Rice Field under the Asian Monsoon Climate: Application of HSPF-Paddy Model vol.6, pp.7, 2014, https://doi.org/10.3390/w6072041
  4. Simulation of Agricultural Water Supply Considering Yearly Variation of Irrigation Efficiency vol.48, pp.6, 2015, https://doi.org/10.3741/JKWRA.2015.48.6.425
  5. Surface Drainage Simulation Model for Irrigation Districts Composed of Paddy and Protected Cultivation vol.55, pp.3, 2013, https://doi.org/10.5389/KSAE.2013.55.3.063
  6. Input and Output Budgets for Nitrogen of Paddy Field in South Korea vol.49, pp.1, 2016, https://doi.org/10.7745/KJSSF.2016.49.1.060
  7. Paddy Field Modelling System For Water Quality Management vol.65, 2016, https://doi.org/10.1002/ird.2034
  8. A study on the runoff characteristics of livestock resources using artificial and natural rainfall vol.22, pp.12, 2013, https://doi.org/10.5322/JESI.2013.22.12.1661
  9. Long-term evaluation of the BMPs scenarios in reducing nutrient surface loads from paddy rice cultivation in Korea using the CREAMS-PADDY model vol.15, pp.1, 2017, https://doi.org/10.1007/s10333-016-0528-0
  10. Analysis of Nutrient Load Balance in the Reservoir Irrigated Paddy Block vol.55, pp.6, 2013, https://doi.org/10.5389/KSAE.2013.55.6.167
  11. Development of agricultural reservoir water supply simulation system vol.20, pp.2, 2014, https://doi.org/10.7851/ksrp.2014.20.2.103
  12. Analysis of Water Quality and Soil Environment in Paddy Fields Partially Irrigated with Untreated Wastewater vol.56, pp.6, 2014, https://doi.org/10.5389/KSAE.2014.56.6.019