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Abstract
In this paper we present a framework for a novel kind of context-aware preference query composition whereby queries

for the Preference SQL system are created. We choose a commercial e-business platform for outdoor activities as a use

case and develop a context model for this domain within our framework. The suggested model considers explicit user

input, domain-specific knowledge, contextual knowledge and location-based sensor data in a comprehensive approach.

Aside from the theoretical background of preferences, the optimization of preference queries and our novel generator

based model we give special attention to the aspects of the implementation and the practical experiences. We provide a

sketch of the implementation and summarize our user studies which have been done in a joint project with an industrial

partner.
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I. INTRODUCTION AND RELATED WORK

Preferences in Databases [1] - as shown by a recent

survey [2] - is a well-established framework to create

personalized information systems. By using well designed

preference models, users can be provided with just the

information they require, thereby overcoming the dreaded

empty result set and flooding effect [3]. In [4] relation-

algebraic aspects of database queries under changing

preferences are discussed. These improvements are start-

ing to show up in real world applications. For instance,

today in the area of tourism - which is used in this paper

as an example application domain - there are many por-

tals which provide information about flights, hotels or

outdoor activities (cp., Fig. 1) by parametrized queries

which either result in an abundant number of items or no

answer at all.

Clearly, this state of affairs is non-satisfactory for both

the users and the owners of the portals. In new tourist

portals (like presented in [5]), preferences allow for

semantically richer queries which define a strict partial

order on the items available for the purpose of selecting
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only the best items available, yielding a higher customer

satisfaction.

In domains like tourism, the notion of preferences var-

ies between users and strongly depends on users’ situa-

tions. Hence, recent models of context-aware preferences

emerged [6-9], which are taking into account factors like

users’ personalities, situation parameters (e.g., location,

time, season, weather), or even options of users’ acquain-

tances. [6] introduces CareDB, which provides scalable

personalized location-based services to users based on

their preferences and the current surrounding context. In

particular, it deals with the problem that some contextual

values may be very expensive to compute. [8] suggests a

context-model for preference queries, where context is

represented by a variant of description logic.

[9] suggests a discrete context model and introduces

profile trees as a data structure for the context resolution

problem, hence retrieving the most appropriate prefer-

ences depending on context. Similarly, [7] suggests a

model for a contextual preference selection based on the

idea of a situation hierarchy. These models can be seen as

top-down approaches in contrast to our constructive bot-

tom-up model. In our approach all preferences are gener-

ated dynamically instead of performing a look-up in a set

of predefined preferences.

There is the open challenge to create a comprehensive

framework to derive preferences from context. In this

paper, we meet this challenge by presenting an approach

for the context-aware preference composition, which 1)

produces inductively structured preference queries that

are intuitive such that they can be verified by domain

experts, 2) allows for easy adaption of the composition

process for the specific application domain, and 3) covers

the entire path from the descriptive application model to

the operational preference query language.

Throughout the paper we refer to the following exam-

ple from the domain of hiking tour recommendations

which informally demonstrates the lines of reasoning about

context-aware preferences of domain experts (like touris-

tic companies). Thereby, we want to model: social net-

work (recommendations from friends), history (already

visited regions by the user), and external knowledge

sources (weather services, like the snow line and the alti-

tude-dependent temperature).

EXAMPLE 1 (Running use case). Consider John, who is

planning a hiking tour in the touristic region of the Bavar-

ian Alps. Last year, he was in the “Tannheim Mountains”

and a friend of his made a tour in “Walser Valley” which

he was very excited about. Since John now wants to see

something new, he wants to avoid regions he has already

visited. At the same time, he trusts his friends and thus

prefers regions recommended by friends.

As he is not very experienced, he only specifies dura-

tion for the tour, while he relies on the recommender for

the ascent and length. John prefers not to hike in the

snow; hence, only mountain peaks below the current snow

line are preferable for him. Because it is a sunny day, the

temperatures in low altitudes are too high, so the tour

should mainly take place in a convenient altitude range.

John looks out for an online portal which picks out a

hiking tour from a large database that perfectly matches

the preferences formulated above. In case there are no

“perfect tours” he accepts compromises, e.g., tours whose

altitude exceeds the snow line a little bit.

The remainder of the paper is structured as follows:

Section II informally presents the preference model used

in this paper. Thereafter, Section III describes our con-

text-aware preference generation process. Section IV

shows how the generated preference queries can be eval-

uated using Preference SQL. Section V provides a con-

ceptual view of the entire system and its implementation.

Finally, Section VI summarizes our claimed contribu-

tions and outlines further research directions.

II. PREFERENCE MODELING

Preference modeling has been in focus for some time,

leading to diverse approaches [1, 3, 10]. We follow the

preference model from [1], which directly maps prefer-

ences to relational algebra and declarative query lan-

guages. It is semantically rich, easy to handle and very

flexible to represent user preferences which are ubiqui-

tous in our life.

A preference P = (A, <P) is a strict partial order on the

domain values of the attributes A of a database relation.

Strict partial order preferences can be interpreted in a

very intuitive manner as personalized wishes in the form

of “I like y more than x”. The term x <P y is interpreted as

“y is better than x according to P” where x, y are domain

values of the attribute set A. The result of a preference is

computed by the preference selection.

Fig. 1. Faceted search for numerical attributes of hiking tours and attribute based search for discrete attributes.
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DEFINITION 1 (Preference selection, BMO-set). The Best-

Matching-Objects (BMO-set) of a preference P = (A, <P)

are all tuples from a database relation R which are maxi-

mal according to the preference order. It is computed by

the preference selection operator σ[P](R) (called winnow

in [10]) and finds all the best matching tuples t for P,

where t[A] is the projection to the attribute set A

σ[P](R) :=

A preference can also be evaluated in grouped mode,

given some attributes B as a subset of A.

σ[P grouping B](R) :=

According to [3] this can be expressed as a preference

itself:

t <P grouping B t'

Preference selection offers a cooperative query answer-

ing behavior by automatic matchmaking: The BMO query

result adapts to the quality of the data in the database,

defeating the empty result effect and reducing the flood-

ing effect by filtering off the worse results.

To specify a preference, a set of intuitive base prefer-

ence constructors together with some complex preference

constructors has been defined. Subsequently, we present

some selected preference constructors used in this paper.

More preference constructors as well as their formal defi-

nition can be found in [1, 3].

1)  Base Preference Constructors

Preferences defined on a single attribute are called

Base preferences. There are base preference constructors

for continuous, discrete (categorical) and spatial domains,

cp., [3, 11, 12]. Fig. 2 shows the “ISA”-hierarchy of sev-

eral frequently occurring base preference constructors.

The SCOREd preference is the parent of all base pref-

erence constructors except EXPLICIT, cp., Fig. 2.

EXPLICIT is used to create any preference that can be

expressed by a finite set of “y is better than x” relation-

ships. SCOREd allows specifying a preference using a

numerical scoring function. When dealing with numeri-

cal values, it is a common practice to group ranges of

scores together. Such a real-world behavior can be mod-

eled using the d-parameter, which is associated with all

preference constructors for continuous domains. It maps

different function values to a whole-number returned by

discretization which therefore might become interchange-

able with other values having the same whole-number.

We now explain some categorical sub-constructors of

the SCOREd preference which are often used. The parent

of all categorical preferences is LAYEREDm, which spec-

ifies a hierarchy of partitions containing preferred domain

values. The most specialized sub-constructors of LAY-

EREDm are POS and NEG.

DEFINITION 2 (POS and NEG preference). The discrete

Positive-preference POS (A, POS-set) states that the user

has a set of preferred values, the POS-set, in the domain

of A. The Negative-preference constructor is the counter-

part to the POS-preference, formally NEG(A, NEG-set)
:= POS(A, dom(A)\NEG-set).

EXAMPLE 2 (Running use case). Reconsider Example 1

where John is planning a new hiking tour. Since John

trusts his friends he wants to avoid regions he has already

visited and therefore prefers regions recommended by his

friends. Using the POS and NEG preference constructors

from Definition 2 these preferences can be formulated as

P1 := POS(recommended, ‘yes’)

P2 := NEG(visited, ‘yes’)

where recommended and visited are attributes in the data-

base relation of hiking tours.

Now, we present some preference constructors for con-

tinuous domains.

DEFINITION 3 (BETWEENd preference). The continuous

preference constructor BETWEENd (A, low, up) expresses

the wish for a value between a lower and an upper

bound. If this is infeasible, values having the smallest dis-

tance to [low, up] are preferred, where the distance is dis-

cretized by the discretization parameter d.

The AROUNDd preference is a specialized BETWEENd

preference.

DEFINITION 4 (AROUNDd preference). The AROUNDd (A,

z) preference equals the BETWEENd (A, z, z) preference.

This means that the desired value should be z ∈ dom(A).

t R∈ t′ R:t A[ ]  P<∈∃¬ t′ A[ ]{ }

t R∈ t′ R:t A[ ]  < P∈∃¬ t′ A[ ] t B[ ] t′ B[ ]=∧{ }

 ⇔ t A[ ]  < P t′ A[ ] t B[ ] t′ B[ ]=∧

Fig. 2. Taxonomy of base preference constructors.
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If this is infeasible, values near to z are preferred.

EXAMPLE 3 (Running use case). Continuing Example 1

John prefers a hiking tour with a duration of around 5

hours. Thereby, John accepts tours which take ±10% of

the desired time, i.e., he uses d-parameter of 0.5 hours.

Using the AROUNDd constructor from above we obtain

P := AROUND0.5 (duration, 5)

Sometimes one prefers values more than or less than

a specified value. For this the MORE_THANd and

LESS_THANd preference constructors can be used.

DEFINITION 5 (LESS_THANd, MORE_THANd).

a) The MORE_THANd (A, z) preference equals the

BETWEENd (A, z, ) preference, i.e., the desired

values are greater or equal to z.

b) LESS_THANd (A, z) is the dual preference to

MORE_THANd (A, z) and equals BETWEENd (A,

,z); i.e., the desired values are less or equal to z.

EXAMPLE 4 (Running use case). John does not prefer to

hike in the snow, hence only mountain peaks below the

current snow line of 2,400 m are preferable for him. This

leads to a LESS_THANd preference on the altitude with a

d-parameter of, let say, 200 m.

P := LESS_THAN200 (altitude, 2400)

2) Complex Preference Constructors

If the user wants to combine several preferences into

more complex preferences, she has to decide the relative

importance of these given preferences. Intuitively, people

speak of “this preference is more important to me than

that one” or “these preferences are all equally important to

me”. Equal importance is modeled by the so-called Pareto

preference.

DEFINITION 6 (Pareto preference). In a Pareto preference

P := P1 ...  Pm = (A1 × ... × Am, <P)

all preferences Pi = (Ai, <Pi
), i = 1,..., m on the attributes

Ai are of equal importance.

The Prioritization preference allows the modeling of

combinations of preferences that have different impor-

tance.

DEFINITION 7 (Prioritization preference). Let Pi = (Ai, <Pi
),

i = 1,..., m be preferences. In a Prioritization preference

P := P1 & ... & Pm = (A1 × ... × Am, <P)

the importance of the preferences decreases from left to

right.

EXAMPLE 5 (Running use case). John prefers a hiking

tour with a duration of 5 hours which is more important

than all other preferences. The recommendations of his

friends are equally important to the wish of staying below

the snow line, e.g., 2,400 m. Using the complex prefer-

ence constructors the example can be formulated as:

PJohn := AROUND0.5 (duration, 5) &

 (POS(recommended, ‘yes’) 

 LESS_TRANda
(altitude, 2400))

The variable da is the d-parameter which will be used

for all preferences regarding altitude. A typical value

could be da = 200, implying a tolerance of 10% at a typi-

cal altitude of 2,000 m.

For the rest of this paper we also need the notion

of a preference term.

DEFINITION 8 (Preference terms). We define the set of

preference terms F inductively:

A base preference P = (A, <P) is a preference term.

If P1 and P2 are preference terms, then the complex pref-

erences P1  P2 and P1 & P2 are preference terms, too.

The semantically well-founded approach of this prefer-

ence model is essential for the personalized preference

term composition. As a unique feature this preference

model allows multiple preferences on the same attribute

without violating the strict partial order. Furthermore, the

inductive preference construction preserves strict partial

order, too.

III. CONTEXT-AWARE PREFERENCE GENERATION

Based on the preference framework presented in Sec-

tion II we will now present our model for creating prefer-

ence terms dependent on the context. This model depends

on context-based triggers which are described by a dis-

crete situation model with few states. Compared to con-

tinuous models, such models are particularly useful when

communicating with domain experts as the small number

of states makes it possible to systematically consider all

combinations of context states and therefore guarantee

that the system behaves in the desired way for all possible

context values. For example, concerning the weather, it is

intuitive to distinguish between “good” and “bad”. For

our domain of a hiking tour recommender we introduced

the states: “good”, “bad” and “warning”. Whereas, “bad”

implies less convenient outdoor activities, the state “warn-

ing” discourages activities like hiking because of safety

reasons. Dependent on the context (time of year, region)

alternatives like city tours or visiting the spa could be

suggested.

A. A Constructive Approach for Preference
Generation

According to our running use case of a hiking tour rec-

∞

∞–

⊗  ⊗

⊗

⊗
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ommender we have three different kinds of influences for

the preference generation: The user input from the search

mask, the user profile from the database and the contex-

tual information from external knowledge sources. In the

following we describe how they interact in our model. As

described in Example 1, the weather conditions imply

certain preferences. However, weather warnings do not

mean that the user input is overridden. The rough concept

of the preference composition always follows this priori-

tization-schema, where each <...>-part is called the pref-

erence component.

<pref_term> := <user_input> & <context> & <profile>

(1)

The <pref_term> generates the preferring-clause of the

resulting Preference SQL query. This schema is sup-

ported by the conclusion of [13] that users might feel a

“lack of control” in context-aware systems, therefore the

user input is prioritized. The same study demonstrated

that users prefer context-awareness to personalization,

thus the profile is less prioritized.

The gravity of the external influences depends on the

user: a well specified user input, i.e., all fields of a search

mask are filled out, implies that the context and the pro-

file have only minor influence to the generated preference.

If a “lazy” user leaves all fields blank, a “default request”

based on the context and the profile will be generated.

In the following, the components of (1) are stepwise

filled with preferences. This procedure underlines our

constructive and dynamic approach based on the current

context. It is one of the big advantages of our model that

preferences are closed under prioritization and Pareto-

composition, and even “seeming contradictions” keep the

strict partial order property. In our running use case of the

hiking tour recommender, the user input consists of the

tour parameters length, duration, and ascent, unless they

are not specified. The components <context> and <pro-

file> are sub-divided:

<context> := <weather_safety> & <children> &

 <weather _conv> (2)

<profile> := (<social_net>  <history>) & <user_type>

(3)

In the <context> component in (2) the influence of the

weather is divided into <weather_safety>, i.e., the safety-

relevant preferences (e.g., snow line), and <weather_conv>,

the convenience-relevant (conv) preferences (e.g., conve-

nient temperature). The <children> component is rele-

vant for families with children and will set preferences

for tours with playgrounds, etc.

In the <profile> component in (3) the recommenda-

tions of friends are contained in <social_net> and the

already visited tours in <history>.

The components <user_input> in (1) and <user_type>

in (3) depend on what the user filled out in the search

mask and the user type. The usage of these components is

shown in the following example.

EXAMPLE 6 (Running use case). Consider the tourist

John who has only specified a duration of 5 hours for his

tour. In our tour recommender this preference is modeled

with the AROUND-constructor. Thereby, we assume a

tolerance of 10% which leads to a d-value of 0.5h. Thus,

we have the following user input preference:

<user_input> := AROUND0.5 (duration, 5)

Depending on empirical values like average speed and

condition of his user type (e.g., “tourist” or “athlete”), the

system selects defaults for length and ascent according to

the duration. Assume that the role of John, e.g., tourist,

implies default values of 12 km for the length and 600 m

for the ascent, both with a d-parameter of 10%.

<user_type> :=

AROUND1.2(length, 12)  AROUND60(ascent, 600)

The Pareto-composition of these preferences is based

on the assumption that the attributes of length and ascent

are of equal importance for the user. This ordering may

depend on the user type, e.g., an athletic user is focused

on the ascent of the tour whereas an inexperienced tourist

is more confident to the duration, i.e., the preferences in

our use-case also depend on the “tourist role”, which is

investigated in [14].

The social network and the history in (3) are Pareto-

composed to take care of both aspects. In the following

example we will show how conflicting preferences can

be handled.

EXAMPLE 7 (Running use case). We assume the attributes

recommended and visited, which are not attributes of the

tour, but they represent the recommendations from the

social network and the visited tours of the current user.

For recommended we have the values “yes”, “no”, and

“unknown”, representing that the region is recommended,

disadvised or that there is no or contradicting information

in the social network. For the visited attribute we only

have the values “yes” and “no” to mark the regions

already visited by John. Regions which are recommended

and simultaneously have not been visited are preferred.

<social_net> := POS (recommended, ‘yes’) 

               <history> := NEG (visited, ‘yes’)

According to the Pareto composition <social_net> 

<history>, a region which was both visited and recom-

mended is considered equal to a region which was neither

visited nor recommended.

The preference model from Section II gives us the

⊗

⊗

⊗
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freedom for this component-based model, where prefer-

ences with oppositional influences have a meaningful

semantic interpretation in our preference model.

To fill the <context> component with context-depen-

dent preferences, a formal model based on context-aware

generators is introduced in the following.

B. Context-Aware Generators

The generation of preferences in our approach is con-

text-aware in two regards: 1) preferences in the components

are triggered by a discretized context, and 2) parameters of

these preferences can change with the continuous context.

By this breakdown the model is kept clear. Whereas in

the “discretized world” the rough structure of the prefer-

ence term is decided, the “continuous world” influences

the fine structure of the preference term. Thus, it is easy

to see how the configuration of the recommender changes

the final output.

DEFINITION 9 (Context variables, [current] situation).

Let Ω the set of continuous world states and ω ∈ Ω a
world state, containing user input and contextual knowl-

edge. We define context variables by mappings

vi : Ω → Vi for i ∈ {1, ...,n} =: I

where Vi are finite sets modeling the discretization of the

context. The set S :=×i∈I Vi represents possible situa-

tions and s ∈ S is a single situation. The aggregation of

all context variables leads to the mapping 

sit : Ω → S, ω (v1(ω), ..., vn(ω))

If ω is the current world state, then sit(ω) is called the

current situation. For a ∈ Vi we define the a-induced sub-

spaces

{vi = a} := V1 × ... × Vi-1 × {a} × Vi+1 × ... × Vn.

We illustrate the concept of context variables in the

following example.

EXAMPLE 8 (Running use case). To describe the current

weather state of the hiking region selected by the user

input, we introduce a context variable weather : Ω→

{good, bad,warning}. To this end, we assume ω contains

information from an online weather service, which is

retrieved automatically after the user submits the search

request.

By children : Ω→ {yes, no} we describe if children are

participating in the hiking tour. We assume that the user

ticks this in the search mask and this information is stored

in ω.

With the context variables we will trigger the rough

structure of the <context> component. To form the fine

structure, we introduce the concept of ω-dependent pref-

erence terms.

DEFINITION 10 (ω-Dependent preference terms). Func-

tions f : Ω → M, where M is either a finite set or the real

numbers, are called ω-dependent functions. They extract

a single part of the world context.

P[ω] is the set of ω-dependent preference terms. If p ∈
P[ω] is a base preference, then for all parameters of base

preferences, ω-dependent functions may occur. Analo-

gous to Definition 8 complex preferences which are induc-

tively constructed from ω-dependent base preferences,

are also in P[ω].

For p ∈ P[ω] the evaluation of all ω-dependent func-

tions in p is denoted by p(ω), where p(ω) ∈ P holds.

EXAMPLE 9 (ω-Dependent preference terms). An ω-

dependent function representing the altitude of the snow

line is snowline : Ω→R. The term LESS_THANda
(alt_max,

snowline(ω)) is an ω-dependent base preference, where

alt_max is the attribute for the maximal altitude of the

tour.

The interplay of the rough and the fine structure of

preference generation is done by the context-aware gen-

erators introduced next.

DEFINITION 11 (Context-aware generator). We define

context-aware generators as tuples

g = (S, p) ∈ G, G := P(S) × P[ω]

where S ∈ P(S) (P denotes the power set) is the set of

associated situations and p ∈ P[ω] is the associated ω-

dependent preference term. A generator g = (S, p) is

called active, if sit(ω) ∈ S.

EXAMPLE 10 (Running use case). To realize the compo-

nents <children> and <weather_safety> we define the

following generators: 

gch := ({children = yes},POS(difficulty, ’easy’))

gws,1 := (S, LESS_THAN(alt_max, snowline(ω)))

gws,2 := ({weather = bad}, LESS_THANda

(alt_max, min(snowline(ω), 1500)))

gws,3 := ({weather = wrn}, POS(activity, ’CityTrail’)

& LESS_THANda
(alt_max, 

min(snowline(ω), 1500)))

Thereby wrn is short for warning. Whereas gws,1 is

always active (the situation set is S), the generators gch,

gws,2, and gws,3 are restricted to situations depending on the

weather and the presence of children. The sets of genera-

tors {gch} and {gws,i | i = 1, 2, 3} are associated with <chil-

dren> and <weather_safety>, respectively.

C. Constructing Preference Terms from
Generators

Now we have components and associated sets of gen-

erators. The next step is to select the active generators

and to create a preference term from them. To this end we

have to specify how the preferences of the generators

 →
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shall be Pareto-composed or prioritized if there is more

than one generator associated with a component.

Assume an ordering of the generators representing the

importance. For a set of generators G  G we realize this

by a function π : Ω × G → N, where smaller values stand

for a higher importance. The π is ω-dependent, which

primarily means a dependency of the user type. This con-

cept of user type dependent preferences was illustrated in

Example 6.

In order to transform a set of generators to a preference

term, first, the active generators are determined (Defini-

tion 12). With Definition 13 we realize the principle that

preferences created by more important generators are pri-

oritized, and Pareto-composed if the according genera-

tors are equally important.

DEFINITION 12 (Restriction to situation, active genera-

tors). Consider a set of generators G  G. The restriction

to a situation s ∈ S is defined as

G|s := {(S, p) ∈ G | s ∈ S}

and with G|sit(ω) we restrict G to the set of active generators.

DEFINITION 13 (Preference generation). For a set of gen-

erators G ∈ G, an ordering π : Ω × G→N, and ω ∈ Ω
we define the preference generation:

pref(G, π, ω) :=

( {p(ω) | (p, S) ∈ G|sit(ω), π(ω, g) = i})

where {p1, ..., pn} := p1 ...  pn and  qi := q1
&...& qm for p1, ..., pn, q1, ..., qm ∈ P. The configuration of

a component is described by the tuple (G, π).

Preference terms generated with the pref-function from

Definition 13 - also known as p-skylines [15] - could be

very long if many generators are active. But there may be

generators which are more “appropriate” for the current

situation than others. The measure for this is the inclusion

order in the set of associated situations. Formally g = (S,

p) is more appropriate than g' = (S', p') for the current sit-

uation t if and only if t ∈ S  S'. Hence, generators which

are more specialized to the current situation are preferred

to less specialized ones. This unveils a nice analogy to

the “best matches only” principle, but now we look out

for the best matching generators.

DEFINITION 14 (Best matching generators). For G ∈ G

and ω ∈ Ω we define

best_gen(G, ω) :=

{(S, p) ∈ G|sit(ω) | (S', p') ∈ G|sit(ω) : S'  S}

The translation from components with configuration

(G, π) to a preference term using the best-matching-gen-

erators principle is given by pref(best_gen(G, ω), π, ω).

In Fig. 3, the situation sets of two generators are illus-

trated. The best_gen function applied to {g, g'} returns

just g' for s = sit(ω), because S' is more specialized to the

current situation.

A similar concept also occurs in [9]. But since we use

this concept only to reduce the number of active genera-

tors, we allow several active generators. They may also

produce contradicting preferences or more than one pref-

erence on the same attribute.

EXAMPLE 11 (Running use case). In Example 10 using

Definition 14 only one generator is in the set best_

gen({gws,i | i = 1,2,3}). Due to {weather = x}  S for x ∈
{bad, warning} we obtain:

best_gen({gws,i | i = 1,2,3}) =

D. The Context Model in the Use Case

To apply the context model to Example 1 from the

introduction we are still missing some definitions. We

have generator sets for all the components of the <con-

text> and <profile> part except <weather_conv>. We will

omit this component for brevity, which is intended to

generate preferences on altitude ranges with convenient

temperatures, quite similar to the <weather_safety> com-

ponent in Example 10.

We exemplify the formal notation of the generators for

<user_input> and <user_type>, informally described in

Example 6.

EXAMPLE 12 (Running use case). Assume the context

variable d_set : Ω→{0,1} which tells us whether the user

has set the value for the tour duration. Let inp_dur : Ω →

R
+ the ω-dependent function representing the duration

value selected by the user. Finally usertype : Ω→{tourist,

athlete,...} is the context variable specifying the user type.

We define the following generator for the <user_input>

component:

gdur_input :=

({d_ set = 1}, AROUND0.1·inp_dur(ω)(inp_dur(ω)))

For the <user_type> component we define the follow-

ing generators:

gdur_default,1 :=

({d_ set = 0, usertype = tourist}, AROUND0.5(5))

⊂

⊂

&
i 1≥

⊗

⊗ ⊗ ⊗ &i 1=

m

⊆

 ∃ ⊆

⊆

gws,3   if   sit ω( ) weather warning={ }⊆
gws,2   if   sit ω( ) weather bad={ }⊆
gws,1   otherwise                                      

⎩
⎨
⎧

Fig. 3. Graphical illustration of the best matching generators
principle.
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gdur_default,2 :=

({d_ set = 0, usertype = athlete}, AROUND0.8(8))

In an analogous manner we define generators for

ascent and length. These definitions produce the desired

user input and the user type dependent input.

Thus, the concept of generators is “reused” for this

component: By allowing that the input from the search

mask is also stored in ω and by defining context variables

as in the example above the concept of generators helps

us to formally specify the user model for the input.

In the following example we subsume our results and

demonstrate how the entire preference term is composed.

EXAMPLE 13 (Running use case). According to the pre-

vious examples and the assumption that convenient weather

conditions imply a minimal altitude (attribute alt_ min)

higher than 1,200 m (because it is too hot below), here,

we present the entire preference term created by our

model:

= 

Thereby we use the rough structure from Eqs. (l)-(3),

P1 and P6 are generated according to Example 6, P3 and

P4 are explained in Example 7, and P2 is from Example

10. Also, P5 is mentioned above in this example.

With this we have defined a model which is applicable

for our problem of designing a hiking tour recommender.

But we still have one drawback with the assumption that

all the external information in ω is available for the rec-

ommender. This may not always be the case.

For example, we assumed we have access to the com-

plete weather forecast to determine the values of our con-

text variables. However, what if the user did not specify a

region for the activity or too big of a region to obtain a

reliable weather forecast? Or what shall the recommender

do if the weather service is unavailable? This can be

modeled by replacing the current situation sit(ω) ∈ S by a
set of current situations sit(Ω0) ⊆ S with Ω0 ⊆ Ω where

all weather states are contained, formally {weather = x}

 sit (Ω0) for all x ∈ {good, bad, warning}. In the formal

model of the generators one must only change all occur-

rences of the expression sit(ω) ∈ S by sit(Ω0) ⊆ S, which

is straightforward but will not be calculated for brevity.

The implication of this is that all the weather dependent

generators are not active.

IV. CONTEXT-AWARE PREFERENCE QUERY
EVALUATION

The complex preference terms generated in Section III

must be evaluated efficiently to retrieve the best-match-

ing objects for the user. Therefore, we discuss in this sec-

tion the Preference SQL system which provides a query

language for evaluating preference queries. Moreover, we

present some optimization techniques for preference opti-

mization and present some practical performance bench-

marks.

A. Preference SQL

1) Preference SQL Syntax:

Preference terms can be transformed into Preference

SQL, an extension of standard SQL for preference query

evaluation on database systems, cp., [11].

Syntactically, Preference SQL extends the SELECT
statement of SQL by an optional PREFERRING clause. A
preference query selects all best matching tuples, i.e.,

tuples that are not dominated by other tuples. The prefer-

ence SQL currently supports most of the SQL-92 stan-

dard as well as many base and complex preference

constructors. For a full overview we refer to [1, 3, 11].

For our goals, a Preference SQL query block has the fol-

lowing schematic design:

The keywords SELECT, FROM, WHERE, and ORDER
BY are treated as the standard SQL query keywords. The
PREFERRING clause specifies a preference by means of

the preference constructors given in Section II and [11].

GROUPING allows a grouped preference selection, cp.,
Definition 1. Additionally, GROUPING contains the
GROUP BY functionality as in the standard SQL if aggre-
gate functions (such as sum(...), count(...), etc.) occur.

HAVING allows for hard conditions for groups as in the
standard SQL. Further keywords such as BUT ONLY, TOP
and LIMIT are provided to modify the preference evalu-

ation. BUT ONLY is used for the definition of post-filters,
and TOP and LIMIT to regulate the size of the result set.
After specifying a preference it is evaluated on the result

of the hard conditions stated in the WHERE clause, return-

pref_term〈 〉
AROUND0.5 duration, 5( ) &

P
1
: user_input〈 〉=

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩

Less_THANda
alt_max, 2400( ) &

P2
: weather_safety〈 〉=

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

POS recommended, ‘yes
,

( )(

P3
: social_net〈 〉=

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩

⊗ NEG visited, ‘yes
,

( )) &

P4
: history〈 〉=

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩

More_THANda
alt_min, 1200( ) &

P5
: weather_conv〈 〉=

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

AROUND1.2 length, 12( ) AROUND60 ascent, 600( )⊗( )

P6
: uesr_type〈 〉=

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

⊆

Fig. 4. Example of a possible schematic design of a Preference
SQL query block.
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ing the BMO-set. Empty results can only occur if the

WHERE clause returns an empty result. For more details

we refer to [11] and [16].

The final preference term from Example 13, e.g., can

be formulated in Preference SQL as demonstrated in

Fig. 5.

A Prioritization is expressed using PRIOR TO, whereas
AND in the PREFERRING clause denotes a Pareto prefer-
ence. The preference constructors AROUND, LESS THAN
and MORE THAN are already known from Section II and

III. Note that the second argument of these preference

constructors denotes the d-parameter. The P
i
 in the com-

ments of the query corresponds to the preference terms in

Example 13.

The query is executed on a productive tour database

provided by Alpstein Tourismus GmbH (http://www.alp-

stein-tourismus.com). It returns all hiking tours in the

Bavarian Alps which correlated best with the prefer-
ence term from Example 13. All hiking tours are stored in

the relation tour. There is a connection with the relation
userregion, because it holds personalized information

about recommendations and visited tours, cp., Example 7.

2) Preference SQL System Architecture:

While the first prototype [17] used query rewriting to

standard SQL, the current implementation of Preference

SQL (since 2005) is a middleware component between the

client and database which performs the algebraic and

cost-based optimization of preference query evaluation,

(Fig. 6).

The “top of the database” approach allows a seamless,

flexible and efficient integration with standard SQL

back-end systems using a Preference SQL Java database

connectivity (JDBC) Driver. This enables the client appli-

cation to submit Preference SQL queries through familiar

SQL clients. The Preference SQL middleware parses the

query and performs preference query optimization as

subsequently described. Those parts of an optimized

query execution plan, which directly correspond to SQL-

92, are handed over to the attached SQL database system

for evaluation. The (grouped) preference selection opera-

tor together with novel algebraic and cost-based query

optimization methods are dealt within the Preference

SQL middleware.

This trend is strengthened by [18], which even sug-

gests implementing numerical preferences tightly in the

relational database engine. According to [2] Preference

SQL is currently the only comprehensive approach which

implements a general preference query model.

B. Optimization of Preference Queries

A first view on the query in Fig. 5 leads to the assump-

tion that the evaluation of this query on a database system

is very inefficient. Executing such queries on large data

sets makes an optimized execution necessary in order to

maintain small runtimes. For this, Preference SQL imple-

ments the accumulated vast query optimization knowhow

from relational databases as well as additional optimization

techniques to cope with the preference selection operator

for complex strict partial order preferences. Basically, in

its current version a Preference SQL query is processed

as follows:

1) The query is parsed and transformed into an initial

operator tree annotated by preference relational

algebra, which comprises classical relational alge-

bra plus the preference selection operator [3].

2) Then heuristics for the algebraic operator tree trans-

formation are applied. For this purpose, the familiar

principles known from standard relational databases
Fig. 5. Preference SQL query for the preference term in Example
13.

Fig. 6. System architecture of Preference SQL. JDBC: Java database connectivity.
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had to be augmented by new transformation laws

for preference relational algebra (see [10, 19, 20] for

details).

3) For efficient evaluation of the preference selection

operator in our middleware, special efficient algo-

rithms had to be implemented. For instance, for

Pareto/skyline queries this repertoire includes the

Hexagon algorithm [21] and LESS [22]. The algo-

rithm selection is guided by a cost-based query exe-

cution model.

4) Likewise, guided by a cost-based model, the prefer-

ence query optimizer determines suitable sub-trees

of the final optimized operator tree for offloading

them to the back-end SQL system. Those sub-trees

are re-translated into SQL and sent via JDBC to the

attached back-end afterwards [11].

5) The entire result of the query is assembled in our

middleware and returned to the requesting client by

the JDBC driver of the Preference SQL.

For example, the Preference SQL rule based query

optimizer transforms the query from Fig. 5 into the oper-

ator tree depicted in Fig. 7.

The optimizer applies among well-known optimization

rules the law L8: Split Prioritization and Push over Join

published by [19]. This law splits the large prioritization

preference from Example 13 and pushes σ[P1 & P2] over

the join ( ). Since the preference selection σ[P1 & P2] may

eliminate tuples from the relation tour which are neces-

sary for the join on the subregions, a semi-join ( ) on

tour and userregion is necessary. Finally, a grouped
preference selection after the join operation leads to an

optimized operator tree of this context-aware preference

query. Note that we omit the Push-Projection optimiza-

tion law for a better reading. Afterwards, a cost-based

algorithm selection is applied for efficient Pareto and pri-

oritization evaluation. Such a preference query process-

ing leads to a very fast retrieval of the best-matching

objects concerning the users preferences. For further

details we refer to [11].

C. Practical Performance Tests

We now present some practical runtime benchmarks

for the evaluation of context-aware preference queries.

In our benchmarks the Preference SQL operates as a

Java framework on top of a PostgreSQL 8.3 database. It

stores the already mentioned real-world database of Alp-

stein Tourismus GmbH. The relations tour and user-
region used in this paper contain approximately 48,000

rows and 200 rows, respectively. We build groups of

three queries each with a specified main region as a hard

constraint, e.g., Bavarian Prealps, Bavarian Alps, and Alps.

For each query in a group we generated different prefer-

ence terms to show the influence of context-aware prefer-

ence generation. Furthermore, the hard constraint on the

main region leads to a different number of tuples (the basic

set) for preference evaluation. The runtimes are depicted

in Fig. 8.

Query 4 corresponds to the preference query used in

this paper, cp., Fig. 5. It can be evaluated in less than 1

second. The hard selection on the main region of the

Bavarian Alps as well as the early computation of the P1

& P2 preference (cp., Fig. 7) leads to a preference selec-

tion on 1,650 tuples after joining. Queries 5 and 6 are

restricted to the same main region but have different pref-

erence terms.

Query 7 is similar to Query 1. However, the basic set

(about 16,000 tuples) is changed because of a different

main region, namely the complete Alps. The runtime is

about 3 seconds, which is fast enough for context-aware

recommender applications, e.g., in the domain of hiking

tours.

The evaluated queries are only a small selection of the

queries occurring in our use case, but they are representa-

tive for our performance benchmarks. The runtime of

these queries show that our approach of a context-aware

preference query composition is not only intuitive but

Fig. 7. Optimized operator tree of the Preference SQL query in
Fig. 5. Fig. 8. Runtime for different context-aware preference queries.



Design and Implementation of a Framework for Con text-Aware Preference Queries

Patrick Roocks et al. 253 http://jcse.kiise.org

also very efficient in computation of results on a produc-

tive database.

V. IMPLEMENTATION OF THE MODEL IN AN
INDUSTRIAL PROJECT

In the previous sections we have described the theoret-

ical foundations of our context model and the practical

experiences with it according to our running use case

from the introduction. In this section we describe our

experiences with the context-model while implementing

it in a joint project together with our industrial partner

Alpstein Tourismus GmbH.

We present a sketch of the implementation of the con-

text-model itself and also the entire system, including

interfaces to the database and the backend for the domain

experts. They are responsible for the content of the con-

text-model, i.e., the preferences and the associated situa-

tion sets, organized in the context-aware generators. For

example it is the task of the domain expert to adjust

default values for length, duration and ascent for the dif-

ferent user types. It is also their task to define the context-

variables which span the situation set.

A. The Entire System

The implementation is mainly sub-divided in two parts:

the first part is the generation of the query. To this end the

input and the model must be brought together. We call

the application performing this task the aggregator. We

describe the components of the query generation in detail:

● The front-end for the user, where the user input is

taken from. The input form is shown in Fig. 9. There

the user has to select a user type (unless he is not a

registered user) and his preferred values for length,

ascent and duration.
● If the user is registered for the portal, his user type is

taken from the profile instead of the input form.

There is also additional information in the profile,

e.g., recommendations from the social network or the

history of visited tours.

● The information from external knowledge sensors is

subsumed by the context.
● The model content is stored in the database.
● The generation of the query, based on the compo-

nents above, is done in the aggregator.

The next part is the evaluation of the preference query.

This is done using the Preference SQL and the tour data-

base provided by our industrial partner. After the evalua-

tion, the results are presented to the user. The architecture

of the entire system is depicted in Fig. 10.

B. Sketch of Implementation of the Context
Model

In the following we provide a brief description of the

main concepts for the implementation of the context

model.

There are some important classes:

● Context, implementing a data structure for ω ∈ Ω
from Definition 9. All the ω-dependant functions are

fields of this class. Their type is arbitrary, but often

Fig. 9. Partial input mask for the hiking tour recommender.

Fig. 10. The architecture of the entire system.
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numeric (e.g., snowline,...).
● Situation, implementing the v

i
 and sit : Ω → S from

Definition 9: Every context variable is a field of this

class which may “null”. Thereby “null” expresses

that the value of this variable is not known. Mathe-

matically the “null” represents the set of all possible

values for this context variable. Due to this, the Situ-

ation class represents not only single situations but

also situation sets. As the context variables are dis-

crete, the fields are usually of “enum” type, and

sometimes they are also booleans for “yes/no” vari-

ables. The situation class contains methods to check if:

- According to Definition 12: Check, if a situation is

contained in the represented situation set.

- According to Definition 13: Check, if a situation set

is strictly contained in another situation set.

Both methods obtain the fields of the situation class

by the reflection techniques in Java, i.e., the methods

do not have to be modified if new context variables

are introduced.
● Preference Term, implementing Definition 10. This is

an abstract class for ω-dependant preference terms. It

has concrete subclasses for complex preferences and

base preferences, ω-dependant attributes are realized

by function classes mapping a “Context”-object to a

numerical domain.
● Situated Generator, implementing Definition 11:

This class has the attributes Situation and Preference

Term; hence it implements our central concept of the

context-aware generator. It contains also a numerical

ranking field, which represents the π-function from

Definition 13.
● Finally a main class for the program, where the algo-

rithm from Definition 13 is implemented, i.e., the

entire preference term is generated.

The content of the model (i.e., the generators and the

associated situations and preferences) is stored in a data-

base via Hibernate; hence, Java objects representing the

concrete model are created automatically.

C. Qualitative User Studies

Based on the implementation we completed some

qualitative user studies presented in [5]. We will recapitu-

late and summarize the results in the following.

The technical criterion of the tests is the runtime; the

user acceptance testing includes:

● Session time of test subjects
● Behavior: success, abort or iteration
● Comments of test subjects

We compared the Faceted search without any context

model, described in the introduction, with the preference

search based on the context model, described in the run-

ning use case. Additionally, the results of the preference

search have been analyzed by the domain experts from

our industrial partner. The details of the evaluation can be

found in [5]. The tour database contained approximately

48,000 tours.

In summary, we obtained the following results:

1) The run time of the generated Preference SQL que-

ries never exceeded 5 seconds.

2) The session time of the preference search was about

half of the session time with the Faceted search.

3) The test subjects expected “larger” result sets exe-

cuting the preference search - due to the many pref-

erences generated in the context-model, the result

set was often quite small (<5 tours).

4) Empty results are still present in the preference

search due to hard selections like geographical restric-

tions.

5) The flooding effect was never noticed executing the

preference search. The result set mostly consists of

1-7 tours.

6) The average quality of the result set of the prefer-

ence search was rated as 1.6 by domain experts -

where 1 means “best” and 3 means “worst”.

VI. SUMMARY AND OUTLOOK

In this paper we present a new approach to context-

aware preference query composition which covers every-

thing from context modeling to generating the preference

query in a well known preference query language. Prefer-

ences, after being retrieved from a repository, are com-

posed - on the fly - depending on context. The construction

is performed by an algorithm which generates the best-

suited composition of context-dependent preferences per

actual situation. The algorithm relies on a discrete con-

text model, where preferences are associated to situation

sets. Since the context model as well as the context-sensi-

tive preferences have an explicit declarative description,

domain experts may easily adapt or extend the model to

meet their specific requirements without any changes to

the generation algorithm.

By using discretization and context dependent func-

tional mappings, we achieve an easy to understand sys-

tem that is suitable for commercial applications. A

running use case from the field of commercial e-business

platforms for outdoor activities is used to motivate and

illustrate the various steps in the process. The perfor-

mance evaluation demonstrates that the answers for the

generated queries can be computed efficiently on realistic

data sets. Due to the BMO principle the trial and error

behavior is replaced by a one-shot behavior which signif-

icantly reduces the session time at a high level of cus-

tomer satisfaction. We have sketched an implementation

which proved its value in a joint project with an industrial

partner. The qualitative user studies underline the practi-

cal relevance of our work.
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For future research we are working on further optimiz-

ing the queries using algebraic optimizations. Further-

more, we investigate preference modeling, especially the

composition of complex preferences. In the use case pre-

sented in this paper we observed that in long chains of

prioritization preferences containing Pareto preferences

(cp., Fig. 5) the last occurring preferences of the term are

often not decisive for the query result. In some cases,

users rate the results as counterintuitive. In [23] we ana-

lyzed this effect in detail and suggested a new kind of

Pareto preference as a remedy.
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