DOI QR코드

DOI QR Code

Centrality Measure in Weighted HPAI Transmission Network: The case of the highly pathogenic H5N1 avian influenza Virus in Gimje, South Korea in 2008

가중 HPAI 확산 네트워크에서 중심성 분석: 2008년 한국 김제 지역의 HPAI 발병 사례를 중심으로

  • Lee, Hyungjin (Graduate School, Seoul National University) ;
  • Suh, Kyo (Department of Landscape Architecture and Rural System Engineering, Seoul National University) ;
  • Jung, Namsu (Department of Rural Construction Engineering, Kongju National University) ;
  • Lee, Inbok (Department of Landscape Architecture and Rural System Engineering, Seoul National University) ;
  • Seo, Ilhwan (Graduate School, Seoul National University) ;
  • Moon, Woonkyung (Animal Plant & Fisheries Quarantine & Inspection Agency) ;
  • Lee, Jeong-Jae (Department of Landscape Architecture and Rural System Engineering, Seoul National University)
  • Received : 2012.11.09
  • Accepted : 2012.12.05
  • Published : 2012.12.30

Abstract

농가를 방문하는 가금관련업체의 관계자 및 차량은 HPAI 질병 확산의 매개체가 된다. 농가들의 가금관련업체 이용 정보를 이용하면 농가간의 연결을 확인할 수 있고 HPAI 확산 가중 네트워크를 구성할 수 있다. 네트워크 분석중 중심성 측정은 질병에 취약하거나 타 농가에 영향력이 큰 역할을 하는 농가를 분석하는 방법으로 HPAI 초기 확산을 통제하는 방법으로 이용된다. 단, HPAI 바이러스는 네트워크의 연결선 가중치에 따라서 확산 경로가 달라질 수 있다. 기존의 분석 방법은 확산 경로에 있어 대치되는 연결선의 강도와 연결선의 수 중 하나만을 고려하기 때문에 질병 확산을 정확히 모의하는데 한계가 있다. 그래서 본 연구에서는 2008년 발병한 한국 김제 지역의 39개 농가를 대상으로 가금관련업체 이용자료를 적용한 HPAI 확산 네트워크에 연결선의 가중치에 지수를 적용하는 방법으로 기존의 방법과 결과를 비교했다. 이 자료는 가금 산업 네트워크의 한국 지역 농가 적용성을 평가 할 수 있을뿐만 아니라 추후 잠재적인 질병 발병 차단을 위한 정보 제공에 중요한 역할을 할 것이다.

Keywords

References

  1. Ahmed S. S. U., A.K. Ersbøll, P. K. Biswas, J. P. Christensen, 2010, The space-time clustering of highly pathogenic avian influenza (HPAI) H5N1 outbreaks in Bangladesh, Epidemiology and Infection, 138, 843-852. https://doi.org/10.1017/S0950268810000178
  2. Alexander D. J., 2000, A review of avian influenza in different bird species. Veterinary Microbiology, 74, 3-13. https://doi.org/10.1016/S0378-1135(00)00160-7
  3. Bell, D. C., J. S. Atkinson, J. W. Carlson, 1999, Centrality measures for disease transmission networks., Social Networks, 21, 1-21. https://doi.org/10.1016/S0378-8733(98)00010-0
  4. Bin W., C. Wang, G. Dong, Y. Guo, D. L. Nolte, T. J. Deliberto, J. Xu, M. Duan, H. He, 2010, New Evidence Suggests Southern China as a Common Source of Multiple Clusters of Highly Pathogenic H5N1 Avian Influenza Virus, The Journal of Infectious Disease, 202, 452-458. https://doi.org/10.1086/653709
  5. Borgatti S. P., K. Carley, D. Krackhardt, 2006, Robustness of centrality measures under conditions of imperfect data. Social Networks, 28, 124-136. https://doi.org/10.1016/j.socnet.2005.05.001
  6. Brandes U., 2001, A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology, 25, 163-177. https://doi.org/10.1080/0022250X.2001.9990249
  7. David E. S., 2006, Principles for Vaccine Protection in Chickens and Domestic Waterfowl against Avian Influenza -Emphasis on Asian H5N1 High Pathogenicity Avian Influenza, Annals of the New York Academy of Sciences, 1081, 174-181. https://doi.org/10.1196/annals.1373.021
  8. Jennifer E. D., R. R. Kao, I. Z. Kiss, K. Hyder, M. Arnold, 2008, Contact structures in the poultry industry in Great Britain: exploring transmission routes for a potential avian influenza virus epidemic. BMC Veterinary Research, 4, 27. https://doi.org/10.1186/1746-6148-4-27
  9. Ferguson N. M., C. A. Donnelly, R. M. Anderson, 2001, Transmission intensity and impact of control policies on the foot and mouth epidemic in Great Britain. Nature, 413, 542-548. https://doi.org/10.1038/35097116
  10. Freeman, L. C., 1978/9, Centrality in social networks conceptual clarification. Social Networks, 1, 215-239.
  11. Henzler D. J., D. C. Kradel, S. Davison, A. F. Ziegler, D. Singletary, P. Debok, A. E. Castro, H. Lu, R. Eckroade, D. Swayne, W. Lagoda, B. Schmucker, A. Nesselrodt, 2003, Epidemiology, production losses, and control measures associated with an outbreak of avian influenza subtype H7N2 in Pennsylvania (1996-98). Avian Diseases, 47, 1022-1036. https://doi.org/10.1637/0005-2086-47.s3.1022
  12. James T., T. Garske, I. Chis-Ster, J. Guitian, D. Pfeiffer, L. Snow, J. Wilesmith, N. M. Ferguson, A. C. Ghani, 2007, Control of a highly pathogenic H5N1 avian influenza outbreak in the GB poultry flock, Proc. R. Soc. B, 274, 2287-2295. https://doi.org/10.1098/rspb.2007.0542
  13. Kao R. R., L. Danon, D. M. Green1, I. Z. Kiss, 2006, Demographic structure and pathogen dynamics on the network of livestock movements in Great Britain. Proceedings Biological Science, 273, 1999-2007. https://doi.org/10.1098/rspb.2006.3505
  14. VanKerkhovea M. D., S. Vong, J. Guitian, D. Holl, P. Mangtani, S. Sane, A. C. Ghani, 2009, Poultry movement networks in Cambodia: Implications for surveillance and control of highly pathogenic avian influenza (HPAI/H5N1), Vaccine, 27, 6345-6352. https://doi.org/10.1016/j.vaccine.2009.05.004
  15. Martinez M., A. M. Perez, A. DelaTorre, I. Iglesias, J. M. Sanchez-Vizcaino, M. J. Munoz, 2011, Evaluating surveillance in wild birds by the application of risk assessment of avian influenza introduction into Spain, Epidemiology and Infection, 139, 91-98. https://doi.org/10.1017/S0950268810001287
  16. Mansley L. M., P. J. Dunlop, S. M. Whiteside, R. G. H. Smith, 2003, Early dissemination of foot-andmouth disease virus through sheep marketing in February 2001, The Journal of veterinary record, 153, 43-50. https://doi.org/10.1136/vr.153.2.43
  17. National Veterinary Research & Quarantine Service, 2008, Ministry for Food, Agriculture, Forestry and Fisheries. Republic of Korea, 2008 HPAI Epidemiological investigation report, Seoul.
  18. Newman, M. E. J., 2001, Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Physical Review E, 64, 016132. https://doi.org/10.1103/PhysRevE.64.016132
  19. Newman, M. E. J., 2002, Spread of epidemic disease on networks. Physical Review E, 66, 016128. https://doi.org/10.1103/PhysRevE.66.016128
  20. Ortiz-Pelaez A., D. U. Pfeiffer, R. J. Soares- Magalhaes, F. J. Guitian, 2006, Use of social network analysis to characterize the pattern of animal movements in the initial phases of the 2001 foot and mouth disease (FMD) epidemic in the UK, Preventive Veterinary Medicine, 76, 40-55. https://doi.org/10.1016/j.prevetmed.2006.04.007
  21. Perez A., M. AlKhamis, U. Carlsson, B. Brito, R. Carrasco-Medanic, Z. Whedbee, P. Willeberg, 2011, Global animal disease surveillance, Spatial and Spatio-temporal Epidemiology, 2, 135-145. https://doi.org/10.1016/j.sste.2011.07.006
  22. Nickbakhsh S., L. Matthews, P. R. Bessell, S. W. J. Reid, R. R. Kao, 2011, Generating social network data using partially described networks: an example informing avian influenza control in the British poultry industry, BMC Veterinary Research, 7, 16 https://doi.org/10.1186/1746-6148-7-16
  23. Sharkey K. J., R. G. Bowers, K. L. Morgan, S. E. Robinson, R. M. Christley, 2008, Epidemiological consequences of an incursion of highly pathogenic H5N1 avian influenza into the British poultry flock. Proceedings Biological Sciences, 275, 19-28. https://doi.org/10.1098/rspb.2007.1100
  24. Lee S. S., D. K. P. Tam, R. L. M. Ho, K. H. Wong, 2009, Social network methodology for studying HIV epidemiology in men having sex with men, Journal of Infection and Public Health, 2, 177-183. https://doi.org/10.1016/j.jiph.2009.09.002
  25. Opsahl T., F. Agneessens, J. Skvoretz, 2010, Node centrality in weighted networks: Generalizing degree and shortest paths, Social Networks, 32, 245-251. https://doi.org/10.1016/j.socnet.2010.03.006
  26. Kim T., W. Hwang, A. Zhang, S. Sen, M. Ramanathan, 2010, Multi-agent modeling of the South Korean avian influenza epidemic, BMC Infectious Diseases, 10, 236. https://doi.org/10.1186/1471-2334-10-236
  27. Vincent M., X. Zhou, E. Marshall, B. Jia, G. Fusheng, M. A. FrancoDixon, N. DeHaan, D. U. Pfeiffer, R. J. S. Magalhães, M. Gilbert, 2011, Risk-based surveillance for avian influenza control along poultry market chains in South China: The value of social network analysis, Preventive Veterinary Medicine, 102, 196-205. https://doi.org/10.1016/j.prevetmed.2011.07.007
  28. Waret-Szkuta A., A. Ortiz-Pelaez, D. U. Pfeiffer, F. Roger, F. J. Guitian, 2011, Herd contact structure based on shared use of water points and grazing points in the Hig hlands of Ethiopia, Epidemiology and Infection, 139, 875-885. https://doi.org/10.1017/S0950268810001718
  29. Wee S. H., C. H. Park, H. M. Nam, C. H. Kim, H. Yoon, S. J. Kim, E. S. Lee, B. Y. Lee, J. H. Kim, J. H. Lee, C. S. Kim, 2006, Outbreaks of highly pathogenic avian influenza (H5N1) in the Republic of Korea in 2003/04. The Veterinary Record, 158, 341-344. https://doi.org/10.1136/vr.158.10.341
  30. World Health Organization (WHO). H5N1 avian influenza: Timeline of major events reported to WHO, 14 Mar 2012. (http://who.int/influenza/human_animal interface/avian_influenza/H5N1_avian_influenza_update1 40312.pdf), Accessed 14 Mar 2012.
  31. Lee Y. J., Y. K. Choi, Y. J. Kim, M. S. Song, O. M. Jeong, E. K. Lee, W. J. Jeon, W. Jeong, S. J. Joh, K. S Choi, M. Her, M. C. Kim, A. Kim, M. J. Kim, E. h. Lee, T. G. Oh, H. J. Moon, D. W. Yoo, J. H. Kim, M. H. Sung, H. Poo, J. H. Kwon, C. J. Kim, 2008, Highly Pathogenic Avian Influenza Virus (H5N1) in Domestic Poultry and Relationship with Migratory Birds, South Korea, Emerging Infectious Diseases, 14, 487-490. https://doi.org/10.3201/eid1403.070767

Cited by

  1. A Comparison Study on the Weighted Network Centrality Measures of tnet and WNET vol.30, pp.4, 2013, https://doi.org/10.3743/KOSIM.2013.30.4.241