
42 Chang Yeol Choi : An Efficient Interruption Handling for 3D Games based on Android Platform

International Journal of Contents, Vol.8, No.4, Dec 2012

An Efficient Interruption Handling
for 3D Games based on Android Platform

Doan Quang Viet, Chang Yeol Choi

Department of Computer and Communications Engineering
Kangwon National University, Chuncheon, 200-701, Korea

ABSTRACT

Recently the unprecedented progress of Android platform and Google Play has brought more opportunities for individual mobile
game developers. When playing an Android 3D game, users can accidentally hit HOME Key or BACK Key or receive an incoming
message. Subsequently, another screen will appear on top and make the game application lose focus, or the operating system pause
that game. These interruption events may also lead to the loss of game information or the game runs out of user control if that game
cannot catch interruption events itself and resume at the exact time. As same as other mobile platforms, Android platform also
provides Activity Lifecycle methods to help the game application control interruption problems. However, these methods are not
adequate to solve all the interruption events. By implementing ANDCube game, we examine most of the possible interruption cases
and propose some solutions to help Android game developers avoid some common interruption cases. Concurrently, we show the
ways how a game application can catch all unavoidable interruption events and effectively resume from interruption to obtain a high
quality game.

Keywords: Android, interruption, 3D game, life cycle.

1. INTRODUCTION

 Imagine when someone is playing a popular mobile game
with tons of entertaining and terrific sounds, he suddenly
receives a phone call. Those mentioned sounds are still playing
and he finds no way to turn back to that game to stop it in order
to listen to the caller at best. On the other hand, while playing a
fighting game, he is trying to hide from the enemy; a system
dialog such as the alarm clock or the message notification
appears on top. They act like a hindrance, and prevent him
from controlling his character. However, the game still
embarrassingly continues and his character dies consequently.
Especially, consider a high configuration game with the long-
term character’s accumulation, that sudden out-of-control state
may lead to the game achievements’ loss. It would add a
serious impact to the game quality.

While playing a mobile game application, game users always
want the game to run continuously from the beginning to the
end without any break. While many applications in personal
computer can run at the same time, in Android platform, other
applications or events can interrupt current application [1], [2].
An unavoidable interruption event makes the game pause or
stop and game users cannot interact with Game User Interface
(Game UI) although it is visible, partially visible or not. The
requirement is after resuming, the “game status” remains the

* Corresponding author, Email: cychoi@kangwon.ac.kr
Manuscript received Jun. 29, 2012; revised Sep 19, 2012;
accepted Sep 29, 2012

same as before [3].
Unlike traditional game applications, in mobile game

applications, interruption handling is a crucial testing part [4],
[5]. Complete solving interruption problems is critical for such
a high quality Android 3D game.

The same as Java Micro Edition platform, Android platform
also provides us with a set of application lifecycle methods to
help the game system control itself instead of waiting for the
operating system to handle [6]. They help the game system
catch and control interruption events by triggering them when
interruption events happen. However, Android lifecycle
methods are not always triggered correctly in all cases [2].

In this paper, we present the experience of all common
interruption events in Android environment and propose
solutions to avoid some interruption cases subsequently. Going
through the implementation of ANDCube, we also show
remedies for unavoidable interruptions and ways of effective
resumption in order to get a higher quality game.

2. BACKGROUND

2.1 Can We Avoid Interruption?

The game runs without any moment of interruption is the
best for any Android applications. In fact, it depends on
whether the platform allows the game system to catch and
ignore an interruption event and return to the game
immediately or not. On the other hand, it also depends on game
user’s expectation. For example, game users may want to

http://dx.doi.org/10.5392/IJoC.2012.8.4.042

 Chang Yeol Choi : An Efficient Interruption Handling for 3D Games based on Android Platform 43

International Journal of Contents, Vol.8, No.4, Dec 2012

receive a notification from alarm dialog or an incoming call. It
will cause an interruption and vice versa.

2.2 What to handle before and after Interruption Events?

Avoiding interruption events is better but in case the game
system must face unavoidable one, it has to catch and control
that interruption event so that the game runs the same “game
status” as before interruption. The “game status” includes
following elements.

Game progress includes all the game elements which users
create when playing the game such as game story, game scene,
game setting, time and score. Before interruption events happen,
game system should stop the game thread and save the last
“game progress”. Afterwards, when the game resumes, game
system restarts game thread and reloads game data. Then, game
users can continue to play the game with the same status as
before. The game system can save them on application’s
memory. However, it is the best to save them on the persistent
storage to prevent the operating system from deleting them for
some reasons.

Graphics rendering is the extremely crucial part of a game.
In an Android 3D game, when the game changes to PAUSED
or STOPPED state, graphics configuration such as OPEN GL
ES context or graphic resource such as textures can be lost.
Stop rendering before interruption events happens to save
battery. Game system should recreate or reload graphics
configuration and resource, and restart rendering after game
resumes.

Input events can cause the game run as unexpected state
when the system still enables the inputs, while an interruption
event happens concurrently. In some cases, game users cannot
interact with the game interface by touching but sensor events
still affect the game play. We should stop receiving all input
events in interrupting time and start to receive them when the
game resumes.

Sound or all audio elements should also be stopped when
interruption events occur and resumed when the game resumes.
A typical game uses two kinds of sound, i.e. music sound with
long duration, and effect sound with its duration around 1
second. While the role of music is a background sound, game
system triggers sound effect in situations. With the short time
and no loop playing, the stopping, pausing or resuming
functions have no meaning to the effect sound. Thus, we do not
need to control sound effect in interruption cases. Unlike the
effect sound, music can play a long time and loop infinitely.
Therefore, when interruption events occur, the game system
needs to pause or stop music and resume it when the game
resumes.

2.3 Android 3D Game Lifecycle and Interruption

 There are four different types of application components
namely Activity, Services, Content provider and Broadcast
receiver. Activity, which has user interface and can be
interacted with users, [8] is the core part of a game application.
While some Android applications can use several activities in
one application, most of the Android 3D game applications use
unique activity. On the other hand, if an Android 3D game uses
several activities, then the INGAME phase, which users start
the game story to the end, usually uses one single activity.

Therefore, we assume that an Android 3D game application
uses unique Android Activity. Each Activity specifies the
lifecycle as the Android Activity Lifecycle [2], [5]. The
concepts of Android 3D game lifecycle and Activity lifecycle
can be considered as identical.

An activity can transit among four states: RUNNING,
PAUSED, STOPPED and SHUTDOWN. Each of these states
can be changed by seven methods which can be triggered when
an interruption event happens. Figure 1 shows a diagram of
four states and seven life cycle methods.

Fig. 1. Android Activity Lifecycle Model [2]

An activity is changed to RUNNING state after returning

from calling onResume(). Game users can interact with it as
foreground screen. If an activity is in RUNNING state and it
loses user focus but still partially visible, the state is changed to
PAUSED state. Method onPause() is triggered. In PAUSED
state, after returning from calling onStop(), the activity is
changed to STOPPED state. It still exists in the background but
no longer be visible. Activity is changed to SHUTDOWN state
after returning from calling onDestroy(). The activity is fully
stopped and no longer exists. Moreover, in PAUSED or
STOPPED state, the activity may be killed by operating system
if foreground activity needs more memory resources. It is
called KILLABLE state. From HoneyComb version, the
activity is not KILLABLE after calling onPause(). Because
more than 90% of Android devices run on older versions than
HoneyComb [7], we assume that the activity is KILLABLE
after calling onPause(). In KILLABLE state, the game system
should save game data for resuming stage.

3. ANALYSIS OF ACTIVITY LIFECYCLE AND
INTERRUPTION EVENTS

This section discusses the disadvantages of Activity lifecycle

in determining interrupting and resuming time, interruption
types and resuming stage in some special screens.

3.1 Android Activity Lifecycle Problems

As a general solution to solve interruption events, the game
application should override lifecycle methods and manually
handle instead of expecting operating system to catch and

onPause() onStop()

onStart()

onResume()

Process of
Activity is

killed

onDestroy()

onRestart()

onCreate()

SHUTDOWN

PAUSED

RUNNING STOPPED

44 Chang Yeol Choi : An Efficient Interruption Handling for 3D Games based on Android Platform

International Journal of Contents, Vol.8, No.4, Dec 2012

control them. In Figure 1, before the game is changed to
RUNNING state, onResume() method is always called even
though it launches from SHUTDOWN state or resumes from
STOPPED or PAUSED state. Therefore, in interruption context,
game system does not need to override onCreate(), onRestart()
and onStart() methods. Similarly, onPause() will always be
called before onStop() and onStop() will always be called
before onDestroy(). After all of the three calling methods, the
activity is in the same KILLABLE state. Game system can also
safely ignore the onStop() and onDestroy() methods. In other
contexts, the game system should override lifecycle methods to
set up, load or release some application components. It means
PAUSED, STOPPED and SHUTDOWN can be grouped in a
single state. Figure 2 shows the state transition after grouping
among lifecycle methods and the standard way of interruption
handling [6]. The RUNNING state is between onResume() and
onPause().

Fig. 2. Standard interruption handling [6]

We experienced some interruption events in the two

Samsung devices, i.e. Galaxy Tab using Android version 2.2 -
Froyo and Galaxy S using Android version 2.3.3 - Gingerbread.
These two Android versions are currently the most popular
ones in the world and cover approximately 74% of all running
Android devices [7].

When the alarm dialog appears as top screen, or users

receive an incoming call, incoming message, or press the
HOME KEY, then the operating system will stop that game. If
users press BACK KEY, the operating system will destroy that
game. The sequence of lifecycle methods for these 2 devices of
all the above cases plus the case when the game launches at the
first time, and device configuration changed is normal and as
follows:

-Activity:onPause()
-Activity:onStop ()
And when the game resumes:
-Activity:onRestart()/Activity:onCreate()
-Activity:onStart()
-Activity:onResume()

When game users scroll down the top bar, press and keep
POWER Key or press and keep HOME KEY, a dialog appears
as a top view and cover partially device screen as Figure 3.
Although Game UI is partially visible and game user cannot
interact with Game UI, the method onPause() is not called here.
It means the game still remains RUNNING state and users
cannot control the game flow. After the game resumes, no any
lifecycle methods is triggered. In this case, after a break time,
the game returns to user with another story because the game
system cannot catch interruption events exactly and pause game
story. This case happens on both Galaxy Tab and Galaxy S
device.

Fig. 3. Game UI is partially visible when users press and keep

the HOME Key

When the screen is time out, users press POWER Key one
time or users turn off the screen, game users cannot interact with
game interface. Method onPaused() is called here as normal
process. After game users press POWER Key again, the screen
turns on and method onResume() is called. It means the game
application is changed to RUNNING state. However, the screen
is still locked and game users, therefore, cannot interact with
game interface. If game application resumes at this time, that
game will run out of user control. Thus, after game users unlock
the screen, Game UI will be totally visible without any methods
called and users can interact with the game application. This
problem only occurs on Galaxy Tab device. On Galaxy S, no
method is called when the screen is turned on and onResume()
is called exactly when the screen is unlocked.

If the RUNNING state of an activity is always between two

methods onResume() and onPause(), game application can
catch interruption events exactly and has a way to control them
effectively. Two above cases prove that when running on a real
device, this rule does not always keep exactly.

3.2 Interruption Types
Interruption events can be understood under two meanings –

making the game stop temporarily at the PAUSED state, or the
game is totally stopped at SHUTDOWN state [7]. Both
situations can be considered as interruption since they make the

INTERRUPTING =
PAUSED / STOPPED / SHUTDOWN

onResume()

RUNNING = RESUMED

onPause()

INTERRUPTING =
PAUSED / STOPPED / SHUTDOWN

 Chang Yeol Choi : An Efficient Interruption Handling for 3D Games based on Android Platform 45

International Journal of Contents, Vol.8, No.4, Dec 2012

game application stop, game users cannot continue to interact
with Game UI and play the game. In PAUSED state, the game
can back to RESUMED state in the previous screen. In
SHUTDOWN state, we can only return to game after it restarts
itself or game users manually restart the game application then
go through some screens to reach the previous screen.

An Android 3D game can meet many interruptions from

inside to outside of mobile devices. We classify them into 3
categories.

• Internal events are from operating system,, happening
without users’ actions. These events can make the
device suspend or shutdown. Furthermore, they also can
pause or stop the game. The alarm dialog, low battery
dialog, the system shutdown due to lack of battery and
the screen being time out are examples for this kind of
event.

• External events are from outside of operating system
and users such as incoming call or message.

• User’s action: When playing the game, user
unintentionally or intentionally makes the game pause
or end if pressing a function key like HOME Key,
BACK Key, POWER Key or VOLUME Key, using a
system function like choosing a notification item from
the top bar or changing the device system’s locale or
orientation.

3.3 Resuming in some Special Screens
A typical game may have many screens with their transitions

and at least one menu screen and INGAME screen. Although
game users want the games remain the last “game status” as
much as possible, but in some special screens, the last one is
not the best choice and we should return to user a better state
which is decided by themselves. For example, if the game
returns in “Exit confirmation screen” to ask users whether to
exit the game or not, even the last choice is YES or NO option,
the game system should highlight NO option to suggest that the
user had better return to the game.

4. DESIGN AND IMPLEMENTATION: ANDCube

4.1 Game Screen Transition Diagram
In order to fully experience interruption problems, we

implement ANDCube game as an Android version of a classic
game Rubik’s Cube [9]. Game users can touch directly on the
screen to select and rotate a layer to play the game.

ANDCube game includes some screens and their transition
as Figure 4. We can experience interruption events in each
screen. Each screen involves multiple elements including a
button, a control and the rendering of the game world. Each
transition between two screens can be triggered by a user's
interaction or the game system.

In ANDCube screen transition diagram, “INGAME menu
screen” is a subset of the main menu screen. It helps game
users conveniently change the game configuration instead of
backing to the main menu while they are still playing the game.

Fig. 4. ANDCube screen transition diagram

4.2 System Design

In order to render 3D graphics on the surface, ANDCube
uses GLSurfaceView which is a type of view and allows the
game system draw OpenGL ES [10]. GLSurfaceView is a
subclass of View class. Thus, it has three calling methods
surfaceCreated(), surfaceChanged() and surfaceDestroyed() to
indicate when GLSurfaceView is created, changed or destroyed
respectively.

GLSurfaceView clients implement the interface Renderer
and make OpenGL calls render a frame. The Renderder
interface has three methods onSurfaceCreated(), onSurface
Changed() and drawFrame(). When GLSurfaceView is created,
method onSurfaceCreated() is triggered. The same for
onSurfaceChanged(), it is triggered when GLSurfaceView is
resized. The Renderer will run on a separate thread and method
drawFrame() run continuously from the GLSurfaceView is
created to its destruction. Figure 5 shows their relationship to
cover graphic part of ANCube game.

GLSurfaceView is created after Activity starts and destroyed
before Activity stops. Therefore, method drawFrame() also
runs in PAUSED state. In order to prevent GLSurfaceView
rendering when Activity is not RUNNING, ANDCube pauses
GLSurfaceView at PAUSED state and resumes them at
RUNNING state by calling two methods of GLSurfaceView
class onPause() and onResume() respectively. In this case, the
OpenGL ES rendering context is typically lost when the
Activity is in PAUSED state and all OpenGL associated with

LOADING SCREEN

LOGO SCREEN

END

START

SOUND OPTION

SPLASH SCREEN

M
A

IN
 M

E
N

U
 S

C
R

E
E

N

IN
G

A
M

E
 M

E
N

U
 SC

R
E

E
N

INGAME

OPTION MENU

HELP MENU

EXIT MENU

CREDIT MENU

46 Chang Yeol Choi : An Efficient Interruption Handling for 3D Games based on Android Platform

International Journal of Contents, Vol.8, No.4, Dec 2012

that context will be automatically deleted. Therefore, after the
game resumes from an interruption, OpenGL resources must be
re-created. ANDCube does it on onSurfaceCreated() method of
Renderer.

Fig. 5. Graphic part of ANDCube game.

4.3 Windows Focus Method and Interruption Handling

Two functions related to window focus and not contained in
lifecycle methods but still triggered when activity is gained or
lost focus are Activity:onWindowFocusChanged() and
GLSurfaceView:onWindowFocusChanged(). Each of these
functions is passed a Boolean argument that indicates the
window is gained or lost. Windows focus methods are
independently called from activity lifecycle methods. It means
when the activity is RUNNING state, activity does not always
gain focus. In case Activity is lost focus, game users though
cannot interact with the game.

4.3.1 Interruption catching and controlling: The previous

part mentioned some interruption events which cannot be
caught by Activity lifecycle methods. To fix this, ANDCube
uses both Activity lifecycle method and Windows Focus
method to determine interrupting and resuming time of
interruption events.

In case users scroll the top bar or press and keep the POWER

Key/HOME Key, the sequence of methods is:
-Activity:onWindowFocusChanged(FALSE)
-GLSurfaceView:onWindowFocusChanged(FALSE)

Method onPause() is not called but onWindowFocus
Changed() is triggered with FALSE argument. It also means
Game UI is lost user focus. The game system can use windows
focus method to catch this interruption event exactly. Then,
when resuming, the sequence of methods is:
-Activity:onWindowFocusChanged(TRUE)
-GLSurfaceView:onWindowFocusChanged(TRUE)

Method onWindowFocusChanged() is called with TRUE
argument while onResume() is not triggered. The game system
can also use windows focus method to determine resuming
time exactly.

When the screen is time out or users press POWER Key one

time to turn off device screen, the sequence of methods is as
follows:
-Activity:onPause()
-GLSurfaceView:surfaceChanged()
-Activity:onWindowFocusChanged(FALSE)
-GLSurfaceView:onWindowFocusChanged(FALSE)

There is no problem here because onPaused() is triggered. In
addition, onWindowFocusChanged() is also triggered exactly
with TRUE argument. And when turning on the screen:
-Activity:onResume()

Although method onResume() is called but the current game
state is not really RUNNING because users cannot control the
game. Therefore, using method onResume() to catch the
resuming time is wrong in this case.

After unlocking screen, the sequence of the calling method:

-Activity:onWindowFocusChanged(TRUE)
-GLSurfaceView:onWindowFocusChanged(TRUE)

Game UI is visible and game application is gained focus. It
is really in RUNNING state: the game is RESUMED state and
users can control it. In this case, method
onWindowFocusChanged() determines the resuming time
exactly.

Using both lifecycle method and Windows Focus method

helps game application determine interruption events and
resuming time exactly on both Galaxy tab and Galaxy S device.
ANDCube implements new interruption handling as Figure 6.

Fig. 6. Interruption controlling in ANDCube.

With new interruption handling, lifecycle model in Figure

1 can be extended as in Figure 7.

INTERUPTING =
PAUSED / STOPPED / SHUTDOWN

INTERUPTING =
PAUSED / STOPPED / SHUTDOWN

onResume()
AND

onWindowFocusChanged(TRUE)

onPause()
OR

onWindowFocusChanged(FALSE)

RUNNING = RESUMED

ACTIVITY GAME
ACTIVITY

GLSurfaceViewGAME
CANVAS

GAME
RENDERER

GLSurfaceview
.Renderer

OPEN
GL ES

 Chang Yeol Choi : An Efficient Interruption Handling for 3D Games based on Android Platform 47

International Journal of Contents, Vol.8, No.4, Dec 2012

Fig. 7. ANDCube game state transition diagram

While onResume() is called before onWindowFocuss

Changed(TRUE), the game system can prepare all game data in
onResume() method for resuming stage. The following
pseudocode presents ANDCube interruption handling.

void function onResume
{

Set GameResume to TRUE;
If WindowFocus is equal to TRUE
{
 RESUME GAME;
}
Else
{
 PREPARE data for resuming;
}
Call the super function;

}

void function onPause
{

Set GameResume to FALSE;
 PAUSE GAME;
 Save data;

Call the super function;
}

void function onWindowFocusChanged(boolean isFocus)
{
 Set WindowFocus to isFocus;
 If GameResume is equal to TRUE and
WindowFocus is equal to TRUE

{
 RESUME GAME;
}

If GameResume is equal to TRUE and
WindowsFocus is equal to FALSE
{
 PAUSE GAME;
}

}

4.3.2 Interruption avoiding: When an interruption event
occurs, one or more methods will be triggered. It seems to be
possible to avoid interruption by overriding the calling method
and choosing not to return supper method. In fact, it does not
help the game avoid killable states.

Because external events such as incoming call or incoming
message are high priority with most users, we do not avoid
them. The same answer happens with internal events. Thus,
game system should avoid users’ action interruption as much as
possible. Firstly, setting game application in full screen mode
prevents users from seeing and interacting with top bar. There
are many interruption events caused by key pressing. However,
the game can avoid Key interruptions by overriding Key Input
Events methods. Except POWER Key and HOME Key which
cannot be manually handled, others cannot make any
interruptions. In order to prevent configuration changing
interruption, which can make the game application restart, we
should specify the android:configChanges attribute in the
manifest and handle onConfigurationChanged() method to
change the game application if it needs to adapt to the new
configuration.

4.3.3 Resuming in some special screens: In INGAME

phase, when the game resumes, the INGAME menu screen
must be displayed. It takes time for users to be ready for
returning to the game. The confirmation and option screen have
two or more options for users. When the game resumes, the
best option, which is assessed by the system, will be marked
although the other options have already marked before
interruption. In the “Exit confirmation screen”, “Game reset
screen”, the NO option is highlighted to tell game user come
back to the game. In the menu screen or INGAME menu screen,
when the game resumes, the menu item marked must be the
same as the before. If there is no marked menu item before
interrupting, the RESUME item will be in high priority.

5. RESULT AND DISCUSSION

ANDCube game is implemented and tested on Samsung

Galaxy Tab and Samsung Galaxy S device with Android OS
version 2.2 Froyo and 2.3.3 Gingerbread respectively. This
ANDCube can avoid some interruption cases and catch exactly
the other ones.

When interruption events occur in INGAME state,
ANDCube saves all necessary game information and stops
playing sound and receiving input. At resuming stage, the
INGAME menu firstly displays and allows game user to have
time to be ready to return the game as Figure 8. After the game
returns, the game status remains the same as before interruption.

onPause() /
onW

indow
FocusC

hanged(FA
LSE) onWindowFocusChanged(TRUE)

onStop()

onR
esum

e()

onStart()
Process

of
Activity
is killed

onDestroy()

onRestart()

onCreate()

SHUTDOWN

PAUSED

RUNNING

STOPPED

48 Chang Yeol Choi : An Efficient Interruption Handling for 3D Games based on Android Platform

International Journal of Contents, Vol.8, No.4, Dec 2012

Fig. 8. Interruption and resuming in INGAME phase (a) The
game status before interruption (b) After the game resumes,

INGAME menu appears and allows game users to be ready to
return the game (c) When game returns, the game status is the

same as before.

Figure 9 shows interruption events and resuming in “Exit
confirmation screen”. Although before interruption, YES
option menu is highlighted, when resuming NO option is
marked to suggest game user returning the game. It is also a
good design for any type of applications.

Fig. 9. Interruption and resuming in “Exit confirmation screen”

(a) Before interruption, YES option is selected (b) After the
game resumes, NO option is highlighted to suggest coming

back to the game.

Table 1. Comparison of interruption handling between standard

method and ANDCube
 Standard [2, 6] ANDCube

Method

Use Activity
lifecycle
methods

Use Activity
lifecycle methods
and window focus
methods

Interruption
catching

and
resuming

Cannot catch
some
interruption
events and
resume in wrong
time.

Catching and
resuming exactly
all common
interruption events

Result in
game

-The game still
runs while user
cannot interact
with Game UI.
-The resuming
game status is
different from
before
interrupting.

-The game pauses
immediately when
interruption events
happen.
-The resuming
game status is the
same as before
interrupting.

Table 1 shows the comparison between standard interruption
handling and ANDCube handling. With standard interruption
handling, the game may not catch some interruption events.
Game users cannot interact with the game interface but the
game still runs and causes some unexpected situations.
ANDCube implementation catches all interruption events and
game users can return to the game safely with the same game
situation as before being interrupted. In standard handling, for
some cases which do not catch the interruption events, the time
component of that game may still be counted while users
cannot control the game. After the game resumes, the game
status will be different from before.

6. CONCLUSION

Differing from personal computers where many applications
can run simultaneously, an application starts can interrupt
another running application in Android platform. With the hope
that Android 3D games can run continuously, users expect the
game applications themselves can have the ability to avoid
interruptions. Otherwise, after resuming from an interruption
event, the game application must preserve previous game status.

In this paper, we experienced all common interruption events
and proposed solution to avoid interruption events. With
unavoidable ones, the implementation of ANDCube showed
how to determine interrupting and resuming time exactly and
proposed solutions for resuming in some special screens. It
helps game system solve interruption completely and achieve a
high quality game.

ANDCube interruption handling works well on Android 2.0
and 2.3.3. However, with the particular specification of each
real device, few special mobile devices may process differently
under the same interruption circumstances such as they do not
call a lifecycle method or make it happen at variable orders.

Besides solving interruption events, we can also reuse the
game screen transition diagram as a template when designing
and implementing an Android 3D game. ANDCube
interruption handling technique can be applied to Android
based 3D game development and testing.

REFERENCES

[1] R. Meier, Professional Android Application Development,
Wiley Publishing, Indiana, 2009.

[2] D. Franke, C. Elsemann, and S. Kowalewski, "Reverse
Engineering of Mobile Application Lifecycles," Proc.
The 18th Working Conference on Reverse Engineering,
2011, pp. 283-292.

[3] D. Franke, S. Kowalewski, C. Weise, and N. Prakobkosol,
"Testing Conformance of Life Cycle Dependent
Properties of Mobile Applications," Proc. IEEE Fifth
International Conference on Software Testing,
Verification and Validation, 2012, pp. 241-250.

[4] T. Dumaresq, M. Villeneuve, “Test Strategies for
Smartphones and Mobile Devices”, Macadamian, 2010.

[5] S. Srirama, R. Kakumani, A. Aggarwal, and P. Pawar,
"Effective Testing Principles for the Mobile Data

b a

a b c

 Chang Yeol Choi : An Efficient Interruption Handling for 3D Games based on Android Platform 49

International Journal of Contents, Vol.8, No.4, Dec 2012

Services Applications," IEEE Workshop on Software for
Wireless Communications and Applications, 2006, pp. 1-
5.

[6] Android Developer Reference, Activity class. Available at
http://developer.android.com/reference/android/app/Activ
ity.html.

[7] Android Developer Resources, Platform Versions.
Available at http://developer.android.com/resources/
dashboard/platform-versions.html.

[8] E. Burnette, Hello, Android: Introducing Google’s
Mobile Development Platform, The Pragmatic Bookshelf,
Indiana, 2008.

[9] Wikipedia, Rubik's Cube. Available at http://en.wikipedia
.org/wiki/Rubik’s_Cube.

[10] M. Zechner, Beginning Android Games, Apress, 2011.

Doan Quang Viet
He received his B.Eng in Computer
Science from Ho Chi Minh City
University of Technology, Vietnam in
2009 and M.Eng in Computer and
Communications Engineering from
Kangwon National University, Republic
of Korea in 2012. He has 2 years of

work experience in Gameloft Studio in Vietnam, as a mobile
game programmer and producer. His main research interests
include mobile game applications and geographic information
systems.

Chang Yeol Choi
He received the B.S, M.S in electronics
engineering from Kyungpook National
University, in 1979, 1981 respectively
and also received Ph.D. in computer
engineering from Seoul National
University in 1995. Before joining the
School of Computer Science and

Engineering, Kangwon National University in 1996, he has
been with Electronics and Telecommunications Research
Institute (ETRI) during 1984-1996, where he served as a
principal researcher of Computer Research Division. His
research interest lies in the field of computer architecture,
embedded system and ubiquitous services.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

