References
- K. Hornik, M. Stinchcombe, and H. White, "Multilayer Feed-forward Networks are Universal Approximators," Neural Networks, vol.2, 1989, pp. 359-366. https://doi.org/10.1016/0893-6080(89)90020-8
- K. Hornik, "Approximation Capabilities of Multilayer Feedforward Networks," Neural Networks, vol.4, 1991, pp. 251-257 https://doi.org/10.1016/0893-6080(91)90009-T
- S. Suzuki, "Constructive Function Approximation by Three-Layer Artificial Neural Networks," Neural Networks, vol.11, 1998, pp. 1049-1058 https://doi.org/10.1016/S0893-6080(98)00068-9
- Y. Liao, S. C. Fang, H. L. W. Nuttle, "Relaxed Conditions for Radial-Basis Function Networks to be Universal Approximators," Neural Networks, vol.16, 2003, pp. 1019-1028 https://doi.org/10.1016/S0893-6080(02)00227-7
- D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing, Cambridge, MA, 1986.
- C. Wang and J. C. Princope, "Training Neural Networks with Additive Noise in the Desired Signal," IEEE Trans. Neural Networks, vol.10, 1999, pp. 1511-1517. https://doi.org/10.1109/72.809097
- J. B. Hampshare and A. H. Waibel, "A Novel Objective Function for Improved Phoneme Recognition Using Time-Delay Neural Networks," IEEE Trans. Neural Networks, vol.1, 1990, pp. 216-228. https://doi.org/10.1109/72.80233
- K. Liano, "Robust Error measure for Supervised Neural Network Learning with Outliers," IEEE Trans. Neural Networks, vol.7, 1996, pp. 246-250. https://doi.org/10.1109/72.478411
- A. van Ooyen and B. Nienhuis, "Improving the Convergence of the Backpropagation Algorithm," Neural Networks, vol.5, 1992, pp. 465-471. https://doi.org/10.1016/0893-6080(92)90008-7
- S.-H. Oh, "Improving the Error Back-Propagation Algorithm with a Modified Error Function," IEEE Trans. Neural Networks, vol.8, 1997, pp. 799-803. https://doi.org/10.1109/72.572117
- S.-H. Oh, "Error Back-Propagation Algorithm for Classification of Imbalanced Data," Neurocomputing, vol.74, 2011, pp. 1058-1061. https://doi.org/10.1016/j.neucom.2010.11.024
- H. White, "Learning in Artificial Neural Networks: A Statistical Perspective," Neural Computation, vol.1, no.4, Winter 1989, pp. 425-464. https://doi.org/10.1162/neco.1989.1.4.425
- M. D. Richard and R. P. Lippmann, "Neural Network Classifier Estimate Bayesian a Posteriori Probabilities," Neural Computa., vol.3, 1991, pp. 461-483. https://doi.org/10.1162/neco.1991.3.4.461
- S.-H. Oh, "Statistical Analyses of Various Error Functions for Pattern Classifiers," Proc. Convergence on Hybrid Information Technology, CCIS vol. 206, 2011, p. 129-133.
- S.-H. Oh, "A Statistical Perspective of Neural Networks for Imbalanced Data problems," Int. Journal of Contents, vol.7, 2011, pp. 1-5. https://doi.org/10.5392/IJoC.2011.7.3.001
- N. Baba, "A New Approach for Finding the Global Minimum of Error Function of Neural Networks," Neural Networks, vol.2, 1989, pp. 367-373. https://doi.org/10.1016/0893-6080(89)90021-X
- Y. Lee, S.-H. Oh, and M. W. Kim, "An Analysis of Premature Saturation in Back-Propagation Learning," Neural Networks, vol.6, 1993, pp. 719-728. https://doi.org/10.1016/S0893-6080(05)80116-9