DENSITY OF IMAGINARY CUBIC FUNCTION FIELDS HAVING INFINITE HILBERT 3-CLASS FIELD TOWER

HWANYUP JUNG

Abstract. In this paper we study the density of imaginary cubic function fields having the infinite Hilbert 3-class field tower.

1. Introduction and Statement of Result

Let $k = \mathbb{F}_q(T)$ be the rational function field over the finite field \mathbb{F}_q of q elements, $\mathbb{A} = \mathbb{F}_q[T]$ and $\infty = (1/T)$. Assume that q is odd with $q \equiv 1 \mod 3$. Let F be an imaginary cubic function field, i.e., F is a finite cyclic extension of k of degree 3 in which ∞ is ramified. Let $F_1^{(3)}$ be the Hilbert 3-class field of $F_0^{(3)} = F$ and inductively, $F_{n+1}^{(3)}$ be the Hilbert 3-class field of $F_n^{(3)}$ for $n \geq 0$. The sequence of fields

$$F_0^{(3)} = F \subset F_1^{(3)} \subset \cdots \subset F_n^{(3)} \subset \cdots$$

is called the Hilbert 3-class field tower of F. We say that F has infinite Hilbert 3-class field tower if $F_n^{(3)} \neq F_{n+1}^{(3)}$ for each $n \geq 0$. Let $\mathcal{C}l_F$ be the ideal class group of \mathcal{O}_F and \mathcal{O}_F^* be the group of units of \mathcal{O}_F . Let $r_3(A) = \dim_{\mathbb{F}_3}(A/A^3)$ be the 3-rank of an abelian group A. In [5], Schoof proved that the Hilbert 3-class field tower of F is infinite if $r_3(\mathcal{C}l_F) \geq 2 + 2\sqrt{r_3(\mathcal{O}_F^*) + 1}$. For more details on Hilbert 3-class field tower of F, we refer [3, 4, 5]. In [3], we studied the infiniteness of the Hilbert 3-class field tower of imaginary cubic function fields. The aim of this paper is to study the density of imaginary cubic function fields having the infinite Hilbert 3-class field tower.

Received November 2, 2012. Accepted December 11, 2012.

²⁰¹⁰ Mathematics Subject Classification. 11R58, 11R60, 11R18.

Key words and phrases. Density, Hilbert 3-class field tower, imaginary cubic function field.

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST)(No.2010-0008139)

Let γ be a generator of \mathbb{F}_q^* . For any $0 \neq N \in \mathbb{A}$, let $\omega(N)$ be the number of distinct monic irreducible divisors of N. Write \mathcal{P} for the set of all monic irreducible polynomials in \mathbb{A} . Assume that we have given a total ordering "<" on \mathcal{P} such that P < Q for any $P, Q \in \mathcal{P}$ with deg $P < \deg Q$. For any positive integers n and t, let $\mathcal{P}(n,t)$ be the set of monic square free polynomials N in \mathbb{A} with deg N = n and $\omega(N) = t$. If we write $N = P_1 \cdots P_t \in \mathcal{P}(n,t)$, it is always assumed that $P_1 < \cdots < P_t$. Let \mathbb{E}_t be the set of all t-tuples $(1, e_2, \ldots, e_t)$ with $e_i \in \{1, 2\}$ for $2 \leq i \leq t$. For any $N = P_1 \cdots P_t \in \mathcal{P}(n,t)$ and $\mathbf{e} = (1, e_2, \ldots, e_t) \in \mathbb{E}_t$, we write $N^{\mathbf{e}} = P_1 P_2^{e_2} \cdots P_t^{e_t}$. Then any imaginary cubic function field F can be written uniquely as $F = k(\sqrt[3]{\gamma^a N^{\mathbf{e}}})$, where $a \in \{0, 1, 2\}$, $N \in \mathcal{P}(n, t)$ and $\mathbf{e} \in \mathbb{E}_t$ with $3 \nmid \deg N^{\mathbf{e}}$.

For positive integers n and t, let $X_{t;n}$ be the set of imaginary cubic function fields $F = k(\sqrt[3]{\gamma^a N^e})$, where $a \in \{0, 1, 2\}$, $N \in \mathcal{P}(n, t)$ and $\mathbf{e} \in \mathbb{E}_t$ with $3 \nmid \deg N^e$, and $X_{t;n}^*$ be the subset of $X_{t;n}$ consisting of $F \in X_{t;n}$ having infinite Hilbert 3-class field tower. We define a density

$$\alpha_t = \lim_{n \to \infty} \frac{|X_{t;n}^*|}{|X_{t:n}|}.$$

If $t \geq 6$, then $X_{t;n}^* = X_{t;n}$, so we have $\alpha_t = 1$ (see [3]). In this paper we are interested in the densities α_4 and α_5 . The main result of this paper is the following theorem.

Theorem 1.1. We have $\alpha_4 \geq \frac{1}{27}$ and $\alpha_5 \geq \frac{29}{81}$.

2. Preliminaries

2.1. Hilbert 3-class field tower and the invariant λ_2

Assume that q is odd with $q \equiv 1 \mod 3$. Let F be an imaginary cubic function field. Write $\mathcal{C}l_F$ for the ideal class group of the integral closure \mathcal{O}_F of \mathbb{A} in F. Let $r_3(\mathcal{C}l_F) = \dim_{\mathbb{F}_3}(\mathcal{C}l_F/\mathcal{C}l_F^3)$ be the 3-rank of $\mathcal{C}l_F$. Let σ is a generator of G = Gal(F/k). Then we have

$$(2.1) r_3(\mathcal{C}l_F) = \lambda_1(F) + \lambda_2(F),$$

where
$$\lambda_i(F) = \dim_{\mathbb{F}_3} \left(\mathcal{C}l_F^{(1-\sigma)^{i-1}} / \mathcal{C}l_F^{(1-\sigma)^i} \right)$$
 for $i = 1, 2$.

We give a sufficient condition for an imaginary cubic function field to have an infinite Hilbert 3-class field tower.

Proposition 2.1. Assume that q is odd with $q \equiv 1 \mod 3$. Let $F = k(\sqrt[3]{\gamma^a N^e})$ be an imaginary cubic function field over k with $N \in \mathcal{P}(n,t)$. If $\lambda_2(F) \geq 6 - t$, then the Hilbert 3-class field tower of F is infinite.

Proof. By Schoof's theorem, the Hilbert 3-class field tower of F is infinite if $r_3(\mathcal{C}l_F) \geq 5$. Since F is imaginary, we have $\lambda_1(F) = t - 1$. Then the result follows from (2.1).

2.2. Some asymptotic formulas

For positive integers n and t, write $\mathcal{I}(n,t)$ for the set of all $N^{\mathbf{e}}$ with $N \in \mathcal{P}(n,t), \mathbf{e} \in \mathbb{E}_t$ and $3 \nmid \deg N^{\mathbf{e}}$. Then we have

$$X_{t;n} = \left\{ k(\sqrt[3]{\gamma^a N^{\mathbf{e}}}) : a \in \{0, 1, 2\}, N^{\mathbf{e}} \in \mathcal{I}(n, t) \right\}.$$

Let $\mathcal{P}'(n,t)$ be the subset of $\mathcal{P}(n,t)$ consisting of $N=P_1\cdots P_t\in \mathcal{P}(n,t)$ with deg $P_i\neq \deg P_j$ for $1\leq i\neq j\leq t$. Let $\mathcal{I}'(n,t)$ be the subset of $\mathcal{I}(n,t)$ consisting of $N^{\mathbf{e}}\in \mathcal{I}(n,t)$ with $N\in \mathcal{P}'(n,t)$ and

$$X'_{t;n} = \left\{ k(\sqrt[3]{\gamma^a N^e}) \in X_{t;n} : a \in \{0, 1, 2\}, N^e \in \mathcal{I}'(n, t) \right\}.$$

For a nonnegative integer s with $0 \le s \le t - 1$, let $X_{t,s;n}$ be the subset of $X_{t;n}$ consisting of $F \in X_{t;n}$ with $\lambda_2(F) = s$ and $X'_{t,s;n} = X_{t,s;n} \cap X'_{t;n}$. It follows from [2, Lemma 3.1, (3.2), (3.7)] that as $n \to \infty$,

$$(2.2) |X_{t:n}| \sim |X'_{t:n}|,$$

$$(2.3) |X'_{t,n}| = 3^{1-t} (4^t - 1) \frac{q^n (\log n)^{t-1}}{(t-1)! n} + O\left(\frac{q^n (\log n)^{t-2}}{n}\right)$$

and

$$|X'_{t,s;n}| = 3^{1-\frac{t^2+t}{2}} (4^t - 1)\nu_3(t-1, t-1-s) \times \left[\frac{q^n (\log n)^{t-1}}{(t-1)! n} + O\left(\frac{q^n (\log n)^{t-2}}{n}\right) \right],$$

where

$$\nu_3(n,a) = \prod_{i=1}^{\left[\frac{a}{2}\right]} \frac{3^{2i}}{(3^{2i}-1)} \prod_{i=0}^{a-1} (3^{n-i}-1).$$

3. Proof of Theorem 1.1

In this section we give a proof of Theorem 1.1. Let $X'^*_{t;n} = X'_{t;n} \cap X^*_{t:n}$. By (2.2), we have

$$\alpha_t = \lim_{\substack{n \to \infty \\ 3 \nmid n}} \frac{|X'^*_{t;n}|}{|X'_{t;n}|}.$$

We first consider the case t=4. For $F\in X'_{4;n}$, by Proposition 2.1, the Hilbert 3-class field tower of F is infinite if $\lambda_2(F)\geq 2$. Hence, we have

$$X'_{4,2;n} \cup X'_{4,3;n} \subset X'^*_{4:n}$$

and so

$$|X'^*_{4,n}| \ge |X'_{4,2,n}| + |X'_{4,3,n}|.$$

By (2.3) and (2.4), we have

$$\begin{split} |X'_{4;n}| &= 3^{-3}(4^4-1)\frac{q^n(\log n)^3}{3!\,n} + O\Big(\frac{q^n(\log n)^2}{n}\Big), \\ |X'_{4,2;n}| &= 3^{-9}(4^4-1)(3^3-1)\left[\frac{q^n(\log n)^3}{3!\,n} + O\Big(\frac{q^n(\log n)^2}{n}\Big)\right], \\ |X'_{4,3;n}| &= 3^{-9}(4^4-1)\left[\frac{q^n(\log n)^3}{3!\,n} + O\Big(\frac{q^n(\log n)^2}{n}\Big)\right] \end{split}$$

as
$$n \to \infty$$
. Hence, we have $\alpha_4 \ge \frac{3^{-9}(4^4-1)(3^3-1)+3^{-9}(4^4-1)}{3^{-3}(4^4-1)} = \frac{1}{27}$.

Now, we consider the case t=5. For $F\in X'_{5;n}$, by Proposition 2.1, the Hilbert 3-class field tower of F is infinite if $\lambda_2(F)\geq 1$. Hence, we have

$$\bigcup_{s=1}^{4} X'_{5,s;n} \subset X'^*_{5;n}$$

and so

$$|X'_{5;n}^*| \ge \sum_{s=1}^4 |X'_{5,s;n}|.$$

By (2.3) and (2.4), we have

$$|X'_{5;n}| = 3^{-4}(4^5 - 1)\frac{q^n(\log n)^4}{4! n} + O\left(\frac{q^n(\log n)^3}{n}\right),$$

$$|X'_{5,s;n}| = 3^{-14}(4^5 - 1)\nu_3(4, 4 - s) \left[\frac{q^n(\log n)^4}{4! n} + O\left(\frac{q^n(\log n)^3}{n}\right)\right]$$

with

$$\nu_3(4,4-s) = \begin{cases} \frac{9}{8}(3^4 - 1)(3^3 - 1)(3^2 - 1) & \text{if } s = 1, \\ \frac{9}{8}(3^4 - 1)(3^3 - 1) & \text{if } s = 2, \\ (3^4 - 1) & \text{if } s = 3, \\ 1 & \text{if } s = 4. \end{cases}$$

Hence, we have $\alpha_5 \geq \frac{29}{81}$.

References

- [1] J. Ahn and H. Jung, Hilbert 2-class field towers of imaginary quadratic function fields. J. Chungcheong Math. Soc. 23 (2010), no 4, 699–704.
- [2] H. Jung, Density of class groups of imaginary ℓ -cyclic function fields. Finite fields and their applications 17 (2011), 286–293.
- [3] _____, Hilbert 3-class field towers of imaginary cubic function fields. submitted.
- [4] M. Rosen, The Hilbert class field in function fields. Exposition. Math. 5 (1987), no. 4, 365–378.
- [5] R. Schoof, Algebraic curves over \mathbb{F}_2 with many rational points. J. Number Theory **41** (1992), no. 1, 6–14.

Hwanyup Jung

Department of Mathematics Education, Chungbuk National University, Cheongju 361-763, Korea.

E-mail: hyjung@chungbuk.ac.kr