DENSITY OF IMAGINARY CUBIC FUNCTION FIELDS HAVING INFINITE HILBERT 3-CLASS FIELD TOWER

Hwanyup Jung

Abstract

In this paper we study the density of imaginary cubic function fields having the infinite Hilbert 3-class field tower.

1. Introduction and Statement of Result

Let $k=\mathbb{F}_{q}(T)$ be the rational function field over the finite field \mathbb{F}_{q} of q elements, $\mathbb{A}=\mathbb{F}_{q}[T]$ and $\infty=(1 / T)$. Assume that q is odd with $q \equiv 1 \bmod 3$. Let F be an imaginary cubic function field, i.e., F is a finite cyclic extension of k of degree 3 in which ∞ is ramified. Let $F_{1}^{(3)}$ be the Hilbert 3-class field of $F_{0}^{(3)}=F$ and inductively, $F_{n+1}^{(3)}$ be the Hilbert 3-class field of $F_{n}^{(3)}$ for $n \geq 0$. The sequence of fields

$$
F_{0}^{(3)}=F \subset F_{1}^{(3)} \subset \cdots \subset F_{n}^{(3)} \subset \cdots
$$

is called the Hilbert 3 -class field tower of F. We say that F has infinite Hilbert 3 -class field tower if $F_{n}^{(3)} \neq F_{n+1}^{(3)}$ for each $n \geq 0$. Let $\mathcal{C} l_{F}$ be the ideal class group of \mathcal{O}_{F} and \mathcal{O}_{F}^{*} be the group of units of \mathcal{O}_{F}. Let $r_{3}(A)=\operatorname{dim}_{\mathbb{F}_{3}}\left(A / A^{3}\right)$ be the 3 -rank of an abelian group A. In [5], Schoof proved that the Hilbert 3-class field tower of F is infinite if $r_{3}\left(\mathcal{C l}_{F}\right) \geq 2+2 \sqrt{r_{3}\left(\mathcal{O}_{F}^{*}\right)+1}$. For more details on Hilbert 3-class field tower of F, we refer [3, 4, 5]. In [3], we studied the infiniteness of the Hilbert 3 -class field tower of imaginary cubic function fields. The aim of this paper is to study the density of imaginary cubic function fields having the infinite Hilbert 3 -class field tower.

[^0]Let γ be a generator of \mathbb{F}_{q}^{*}. For any $0 \neq N \in \mathbb{A}$, let $\omega(N)$ be the number of distinct monic irreducible divisors of N. Write \mathcal{P} for the set of all monic irreducible polynomials in \mathbb{A}. Assume that we have given a total ordering " $<$ " on \mathcal{P} such that $P<Q$ for any $P, Q \in \mathcal{P}$ with $\operatorname{deg} P<\operatorname{deg} Q$. For any positive integers n and t, let $\mathcal{P}(n, t)$ be the set of monic square free polynomials N in \mathbb{A} with $\operatorname{deg} N=n$ and $\omega(N)=t$. If we write $N=P_{1} \cdots P_{t} \in \mathcal{P}(n, t)$, it is always assumed that $P_{1}<\cdots<P_{t}$. Let \mathbb{E}_{t} be the set of all t-tuples $\left(1, e_{2}, \ldots, e_{t}\right)$ with $e_{i} \in\{1,2\}$ for $2 \leq i \leq t$. For any $N=P_{1} \cdots P_{t} \in \mathcal{P}(n, t)$ and $\mathbf{e}=$ $\left(1, e_{2}, \ldots, e_{t}\right) \in \mathbb{E}_{t}$, we write $N^{\mathbf{e}}=P_{1} P_{2}^{e_{2}} \cdots P_{t}^{e_{t}}$. Then any imaginary cubic function field F can be written uniquely as $F=k\left(\sqrt[3]{\gamma^{a} N^{\mathbf{e}}}\right)$, where $a \in\{0,1,2\}, N \in \mathcal{P}(n, t)$ and $\mathbf{e} \in \mathbb{E}_{t}$ with $3 \nmid \operatorname{deg} N^{\mathbf{e}}$.

For positive integers n and t, let $X_{t ; n}$ be the set of imaginary cubic function fields $F=k\left(\sqrt[3]{\gamma^{a} N^{\mathbf{e}}}\right)$, where $a \in\{0,1,2\}, N \in \mathcal{P}(n, t)$ and $\mathbf{e} \in \mathbb{E}_{t}$ with $3 \nmid \operatorname{deg} N^{\mathbf{e}}$, and $X_{t ; n}^{*}$ be the subset of $X_{t ; n}$ consisting of $F \in X_{t ; n}$ having infinite Hilbert 3 -class field tower. We define a density

$$
\alpha_{t}=\lim _{n \rightarrow \infty} \frac{\left|X_{t ; n}^{*}\right|}{\left|X_{t ; n}\right|}
$$

If $t \geq 6$, then $X_{t ; n}^{*}=X_{t ; n}$, so we have $\alpha_{t}=1$ (see [3]). In this paper we are interested in the densities α_{4} and α_{5}. The main result of this paper is the following theorem.

Theorem 1.1. We have $\alpha_{4} \geq \frac{1}{27}$ and $\alpha_{5} \geq \frac{29}{81}$.

2. Preliminaries

2.1. Hilbert 3-class field tower and the invariant λ_{2}

Assume that q is odd with $q \equiv 1 \bmod 3$. Let F be an imaginary cubic function field. Write $\mathcal{C} l_{F}$ for the ideal class group of the integral closure \mathcal{O}_{F} of \mathbb{A} in F. Let $r_{3}\left(\mathcal{C} l_{F}\right)=\operatorname{dim}_{\mathbb{F}_{3}}\left(\mathcal{C} l_{F} / \mathcal{C} l_{F}^{3}\right)$ be the 3-rank of $\mathcal{C} l_{F}$. Let σ is a generator of $G=\operatorname{Gal}(F / k)$. Then we have

$$
\begin{equation*}
r_{3}\left(\mathcal{C} l_{F}\right)=\lambda_{1}(F)+\lambda_{2}(F) \tag{2.1}
\end{equation*}
$$

where $\lambda_{i}(F)=\operatorname{dim}_{\mathbb{F}_{3}}\left(\mathcal{C} l_{F}^{(1-\sigma)^{i-1}} / \mathcal{C} l_{F}^{(1-\sigma)^{i}}\right)$ for $i=1,2$.
We give a sufficient condition for an imaginary cubic function field to have an infinite Hilbert 3-class field tower.

Proposition 2.1. Assume that q is odd with $q \equiv 1 \bmod 3$. Let $F=$ $k\left(\sqrt[3]{\gamma^{a} N^{\mathbf{e}}}\right)$ be an imaginary cubic function field over k with $N \in \mathcal{P}(n, t)$. If $\lambda_{2}(F) \geq 6-t$, then the Hilbert 3-class field tower of F is infinite.

Proof. By Schoof's theorem, the Hilbert 3-class field tower of F is infinite if $r_{3}\left(\mathcal{C} l_{F}\right) \geq 5$. Since F is imaginary, we have $\lambda_{1}(F)=t-1$. Then the result follows from (2.1).

2.2. Some asymptotic formulas

For positive integers n and t, write $\mathcal{I}(n, t)$ for the set of all $N^{\mathbf{e}}$ with $N \in \mathcal{P}(n, t), \mathbf{e} \in \mathbb{E}_{t}$ and $3 \nmid \operatorname{deg} N^{\mathbf{e}}$. Then we have

$$
X_{t ; n}=\left\{k\left(\sqrt[3]{\gamma^{a} N^{\mathbf{e}}}\right): a \in\{0,1,2\}, N^{\mathbf{e}} \in \mathcal{I}(n, t)\right\}
$$

Let $\mathcal{P}^{\prime}(n, t)$ be the subset of $\mathcal{P}(n, t)$ consisting of $N=P_{1} \cdots P_{t} \in \mathcal{P}(n, t)$ with $\operatorname{deg} P_{i} \neq \operatorname{deg} P_{j}$ for $1 \leq i \neq j \leq t$. Let $\mathcal{I}^{\prime}(n, t)$ be the subset of $\mathcal{I}(n, t)$ consisting of $N^{\mathbf{e}} \in \mathcal{I}(n, t)$ with $N \in \mathcal{P}^{\prime}(n, t)$ and

$$
X_{t ; n}^{\prime}=\left\{k\left(\sqrt[3]{\gamma^{a} N^{\mathbf{e}}}\right) \in X_{t ; n}: a \in\{0,1,2\}, N^{\mathbf{e}} \in \mathcal{I}^{\prime}(n, t)\right\}
$$

For a nonnegative integer s with $0 \leq s \leq t-1$, let $X_{t, s ; n}$ be the subset of $X_{t ; n}$ consisting of $F \in X_{t ; n}$ with $\lambda_{2}(F)=s$ and $X_{t, s ; n}^{\prime}=X_{t, s ; n} \cap X_{t ; n}^{\prime}$. It follows from $[2$, Lemma 3.1, (3.2), (3.7)] that as $n \rightarrow \infty$,

$$
\begin{equation*}
\left|X_{t ; n}\right| \sim\left|X_{t ; n}^{\prime}\right| \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
\left|X_{t ; n}^{\prime}\right|=3^{1-t}\left(4^{t}-1\right) \frac{q^{n}(\log n)^{t-1}}{(t-1)!n}+O\left(\frac{q^{n}(\log n)^{t-2}}{n}\right) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{align*}
\left|X_{t, s ; n}^{\prime}\right|= & 3^{1-\frac{t^{2}+t}{2}}\left(4^{t}-1\right) \nu_{3}(t-1, t-1-s) \\
& \times\left[\frac{q^{n}(\log n)^{t-1}}{(t-1)!n}+O\left(\frac{q^{n}(\log n)^{t-2}}{n}\right)\right] \tag{2.4}
\end{align*}
$$

where

$$
\nu_{3}(n, a)=\prod_{i=1}^{\left[\frac{a}{2}\right]} \frac{3^{2 i}}{\left(3^{2 i}-1\right)} \prod_{i=0}^{a-1}\left(3^{n-i}-1\right)
$$

3. Proof of Theorem 1.1

In this section we give a proof of Theorem 1.1. Let $X_{t ; n}^{\prime *}=X_{t ; n}^{\prime} \cap$ $X_{t ; n}^{*}$. By (2.2), we have

$$
\alpha_{t}=\lim _{\substack{n \rightarrow \infty \\ 3 \nmid n}} \frac{\left|X_{t ; n}^{\prime *}\right|}{\left|X_{t ; n}^{\prime}\right|}
$$

We first consider the case $t=4$. For $F \in X^{\prime}{ }_{4 ; n}$, by Proposition 2.1, the Hilbert 3 -class field tower of F is infinite if $\lambda_{2}(F) \geq 2$. Hence, we have

$$
X_{4,2 ; n}^{\prime} \cup X^{\prime}{ }_{4,3 ; n} \subset X_{4 ; n}^{\prime *}
$$

and so

$$
\left|X_{4 ; n}^{\prime *}\right| \geq\left|X_{4,2 ; n}^{\prime}\right|+\left|X_{4,3 ; n}^{\prime}\right| .
$$

By (2.3) and (2.4), we have

$$
\begin{aligned}
& \left|{X^{\prime}}_{4 ; n}\right|=3^{-3}\left(4^{4}-1\right) \frac{q^{n}(\log n)^{3}}{3!n}+O\left(\frac{q^{n}(\log n)^{2}}{n}\right) \\
& \left|{X^{\prime}}_{4,2 ; n}\right|=3^{-9}\left(4^{4}-1\right)\left(3^{3}-1\right)\left[\frac{q^{n}(\log n)^{3}}{3!n}+O\left(\frac{q^{n}(\log n)^{2}}{n}\right)\right] \\
& \left|{X^{\prime}}_{4,3 ; n}\right|=3^{-9}\left(4^{4}-1\right)\left[\frac{q^{n}(\log n)^{3}}{3!n}+O\left(\frac{q^{n}(\log n)^{2}}{n}\right)\right]
\end{aligned}
$$

as $n \rightarrow \infty$. Hence, we have $\alpha_{4} \geq \frac{3^{-9}\left(4^{4}-1\right)\left(3^{3}-1\right)+3^{-9}\left(4^{4}-1\right)}{3^{-3}\left(4^{4}-1\right)}=\frac{1}{27}$.
Now, we consider the case $t=5$. For $F \in X^{\prime}{ }_{5 ; n}$, by Proposition 2.1, the Hilbert 3-class field tower of F is infinite if $\lambda_{2}(F) \geq 1$. Hence, we have

$$
\bigcup_{s=1}^{4} X_{5, s ; n}^{\prime} \subset X_{5 ; n}^{\prime *}
$$

and so

$$
\left|X_{5 ; n}^{\prime *}\right| \geq \sum_{s=1}^{4}\left|X_{5, s ; n}^{\prime}\right|
$$

By (2.3) and (2.4), we have

$$
\begin{aligned}
& \left|{X^{\prime}}_{5 ; n}\right|=3^{-4}\left(4^{5}-1\right) \frac{q^{n}(\log n)^{4}}{4!n}+O\left(\frac{q^{n}(\log n)^{3}}{n}\right) \\
& \left|{X^{\prime}}_{5, s ; n}\right|=3^{-14}\left(4^{5}-1\right) \nu_{3}(4,4-s)\left[\frac{q^{n}(\log n)^{4}}{4!n}+O\left(\frac{q^{n}(\log n)^{3}}{n}\right)\right]
\end{aligned}
$$

with

$$
\nu_{3}(4,4-s)= \begin{cases}\frac{9}{8}\left(3^{4}-1\right)\left(3^{3}-1\right)\left(3^{2}-1\right) & \text { if } s=1 \\ \frac{9}{8}\left(3^{4}-1\right)\left(3^{3}-1\right) & \text { if } s=2 \\ \left(3^{4}-1\right) & \text { if } s=3 \\ 1 & \text { if } s=4\end{cases}
$$

Hence, we have $\alpha_{5} \geq \frac{29}{81}$.

References

[1] J. Ahn and H. Jung, Hilbert 2-class field towers of imaginary quadratic function fields. J. Chungcheong Math. Soc. 23 (2010), no 4, 699-704.
[2] H. Jung, Density of class groups of imaginary ℓ-cyclic function fields. Finite fields and their applications 17 (2011), 286-293.
\qquad , Hilbert 3-class field towers of imaginary cubic function fields. submitted.
[4] M. Rosen, The Hilbert class field in function fields. Exposition. Math. 5 (1987), no. 4, 365-378.
[5] R. Schoof, Algebraic curves over \mathbb{F}_{2} with many rational points. J. Number Theory 41 (1992), no. 1, 6-14.

Hwanyup Jung

Department of Mathematics Education, Chungbuk National University, Cheongju 361-763, Korea.
E-mail: hyjung@chungbuk.ac.kr

[^0]: Received November 2, 2012. Accepted December 11, 2012.
 2010 Mathematics Subject Classification. 11R58, 11R60, 11R18.
 Key words and phrases. Density, Hilbert 3-class field tower, imaginary cubic function field.

 This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST)(No.2010-0008139)

