APPLICATIONS OF COUPLED N-STRUCTURES IN BH-ALGEBRAS

MIN JEONG SEO AND SUN SHIN AHN*

Abstract. The notions of a \mathcal{N} -subalgebra, a (strong) \mathcal{N} -ideal of BH-algebras are introduced, and related properties are investigated. Characterizations of a coupled \mathcal{N} -subalgebra and a coupled (strong) \mathcal{N} -ideals of BH-algebras are given. Relations among a coupled \mathcal{N} -subalgebra, a coupled \mathcal{N} -ideal and a coupled strong \mathcal{N} of BH-algebras are discussed.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras ([2,3]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. BCKalgebras have some connections with other areas: D. Mundici [9] proved MV-algebras are categorically equivalent to bounded commutative algebra, and J. Meng [10] proved that implicative commutative semigroups are equivalent to a class of BCK-algebras. Y. B. Jun, E. H. Roh, and H. S. Kim [5] introduced the notion of a BH-algebra, which is a generalization of BCK/BCI-algebras. They defined the notions of ideal, maximal ideal and translation ideal and investigated some properties. E. H. Roh and S. Y. Kim [9] estimated the number of BH^* -subalgebras of order i in a transitive BH^* -algebras by using Hao's method. In [1], S. S. Ahn and J. H. Lee introduced the notion of strong ideals in BH-algebra and investigate some properties of it. They also defined the notion of a rough sets in BH-algebras. Using a strong ideal in BH-algebras, they obtained some relations between strong ideals and upper(lower) rough strong ideals in BH-algebras. Jun et.al([4]) introduced the notion of

Received October 23, 2012. Accepted December 4, 2012.

²⁰¹⁰ Mathematics Subject Classification. 06D72, 06F35, 03G25.

Key words and phrases. Coupled \mathcal{N} -structure, Coupled \mathcal{N} -subalgerba, Coupled \mathcal{N} -ideal, Coupled strong \mathcal{N} -ideal.

^{*}Corresponding author.

coupled \mathcal{N} -structures and its application in BCK/BCI-algebras was discussed.

In this paper, we introduce the notions of a coupled \mathcal{N} -subalgebra, a coupled (strong) \mathcal{N} -ideals of BH-algebras are introduced, and related properties are investigated. Characterizations of a coupled \mathcal{N} -subalgebra and a coupled (strong) \mathcal{N} -ideals of BH-algebras are given. Relations among a coupled \mathcal{N} -subalgebra, a coupled \mathcal{N} -ideal and a coupled strong \mathcal{N} -ideal of BH-algebras are discussed.

2. Preliminaries

By a BH-algebra([5]), we mean an algebra (X; *, 0) of type (2,0) satisfying the following conditions:

- (I) x * x = 0,
- (II) x * 0 = x,
- (III) x * y = 0 and y * x = 0 imply x = y, for all $x, y \in X$.

For brevity, we also call X a BH-algebra. In X we can define a binary operation " \leq " by $x \leq y$ if and only if x * y = 0. A non-empty subset S of a BH-algebra X is called a subalgebra of X if, for any $x, y \in S$, $x * y \in S$, i.e., S is a closed under binary operation.

Definition 2.1.([5]) A non-empty subset A of a BH-algebra X is called an ideal of X if it satisfies:

- (I1) $0 \in A$,
- (I2) $x * y \in A$ and $y \in A$ imply $x \in A$, $\forall x, y \in X$.

An ideal A of a BH-algebra X is said to be a $translation\ ideal$ of X if it satisfies:

(I3)
$$x*y \in A$$
 and $y*x \in A$ imply $(x*z)*(y*z) \in A$ and $(z*x)*(z*y) \in A$, $\forall x, y, z \in X$.

Definition 2.2.([9]) A BH-algebra X is called a BH^* -algebra if it satisfies the identity (x * y) * x = 0 for all $x, y \in X$.

Example 2.3.([5]) Let $X := \{0, a, b, c\}$ be a BH-algebra which is not a BCK-algebra with the following Cayley table:

Then $A := \{0, 1\}$ is a translation ideal of X.

Definition 2.4.([1]) A non-empty subset A of a BH-algebra X is called a $strong\ ideal$ of X if it satisfies (I1) and

(I4)
$$(x * y) * z, y \in A$$
 imply $x * z \in A$.

Lemma 2.5.([1]) In a BH-algebra, any strong ideal is an ideal.

Lemma 2.6.([1]) In a BH^* -algebra X, any ideal is a subalgebra.

Corollary 2.7.([1]) Any strong ideal of BH^* -algebra is a subalgebra.

3. Coupled N-structures applied to subalgebras and ideals in BH-algebras

Definition 3.1.([4]) A coupled \mathcal{N} -structure \mathcal{C} in a nonempty set X is an object of the form

$$\mathcal{C} = \{ \langle x; f_{\mathcal{C}}, g_{\mathcal{C}} \rangle : x \in X \}$$

where $f_{\mathcal{C}}$ and $g_{\mathcal{C}}$ are \mathcal{N} -functions on X such that $-1 \leq f_{\mathcal{C}}(x) + g_{\mathcal{C}}(x) \leq 0$ for all $x \in X$.

A coupled \mathcal{N} -structure $\mathcal{C} = \{\langle x; f_{\mathcal{C}}, g_{\mathcal{C}} \rangle : x \in X\}$ in X can be identified to an ordered pair $(f_{\mathcal{C}}, g_{\mathcal{C}})$ in $\mathcal{F}(X, [-1, 0]) \times \mathcal{F}(X, [-1, 0])$. For the sake of simplicity, we shall use the notation $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ instead of $\mathcal{C} = \{\langle x; f_{\mathcal{C}}, g_{\mathcal{C}} \rangle : x \in X\}$.

For a coupled \mathcal{N} -structure $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ in X and $t, s \in [-1, 0]$ with $t + s \ge -1$, the set

$$\mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t, s)\} = \{x \in X \mid f_{\mathcal{C}}(x) \le t, \ g_{\mathcal{C}}(x) \ge s\}$$

is called an $\mathcal{N}(t,s)$ -level set of $\mathcal{C}=(f_{\mathcal{C}},g_{\mathcal{C}})$. An $\mathcal{N}(t,t)$ -level set of $\mathcal{C}=(f_{\mathcal{C}},g_{\mathcal{C}})$ is called an \mathcal{N} -level set of $\mathcal{C}=(f_{\mathcal{C}},g_{\mathcal{C}})$.

Definition 3.2.([4]) A coupled \mathcal{N} -structure $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ in a BH-algebra X is called a *coupled* \mathcal{N} -subalgebra of X if it satisfies:

(3.1)
$$f_{\mathcal{C}}(x * y) \leq \bigvee \{f_{\mathcal{C}}(x), f_{\mathcal{C}}(y)\}$$
 and $g_{\mathcal{C}}(x * y) \geq \bigwedge \{g_{\mathcal{C}}(x), g_{\mathcal{C}}(y)\}$ for all $x, y \in X$.

Theorem 3.3.([4]) A coupled \mathcal{N} -structure $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ in a BH-algebra X is a coupled \mathcal{N} -subalgebra of X if and only if the nonempty $\mathcal{N}(t,s)$ -level set $\mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t,s)\}$ is a subalgebra of X for all $t, s \in [-1,0]$ with $t+s \geq -1$.

Lemma 3.4.([4]) Every coupled \mathcal{N} -subalgebra $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ of a BH-algebra X satisfies $f_{\mathcal{C}}(0) \leq f_{\mathcal{C}}(x)$ and $g_{\mathcal{C}}(0) \geq g_{\mathcal{C}}(x)$ for all $x \in X$.

Proposition 3.5. If every \mathcal{N} -subalgebra $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ of a BH-algebra X satisfies the inequalities $f_{\mathcal{C}}(x * y) \leq f_{\mathcal{C}}(y)$ and $g_{\mathcal{C}}(x * y) \geq g_{\mathcal{C}}(y)$ for any $x, y \in X$, then $f_{\mathcal{C}}$ and $g_{\mathcal{C}}$ are constant functions.

Proof. Let $x \in X$. Using (II) and assumption, we have $f_{\mathcal{C}}(x) = f_{\mathcal{C}}(x*0) \leq f_{\mathcal{C}}(0)$ and $g_{\mathcal{C}}(x) = g_{\mathcal{C}}(x*0) \geq g_{\mathcal{C}}(0)$. It follows from Lemma 3.4 that $f_{\mathcal{C}}(x) = f_{\mathcal{C}}(0)$ and $g_{\mathcal{C}}(x) = g_{\mathcal{C}}(0)$. Hence $f_{\mathcal{C}}$ and $g_{\mathcal{C}}$ are constant functions.

Definition 3.6.([4]) A coupled \mathcal{N} -structure $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ in a BH-algebra X is called a *coupled* \mathcal{N} -ideal of X if it satisfies:

(c81)
$$f_{\mathcal{C}}(0) \leq f_{\mathcal{C}}(x)$$
 and $g_{\mathcal{C}}(0) \geq g_{\mathcal{C}}(x)$,
(c82) $f_{\mathcal{C}}(x) \leq \bigvee \{f_{\mathcal{C}}(x * y), f_{\mathcal{C}}(y)\}$ and $g_{\mathcal{C}}(x) \geq \bigwedge \{g_{\mathcal{C}}(x * y), g_{\mathcal{C}}(y)\}$,
for all $x, y \in X$.

Example 3.7. (1) Let $X = \{0, 1, 2, 3, 4\}$ be a BH-algebra([1]), which is not a BCK/BCI-algebra, with the following Cayley table:

*	0 0 1 2 3 4	1	2	3	4
0	0	0	0	0	4
1	1	0	1	0	0
2	2	2	0	0	0
3	3	3	1	0	0
4	4	3	4	3	0

Let $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ be a coupled \mathcal{N} -structure in X defined by

$$\mathcal{C} = \{ \langle 0; -0.8, -0.2 \rangle, \quad \langle 1; -0.6, -0.2 \rangle, \langle 2; -0.5, -0.2 \rangle, \\ \langle 3; -0.5, -0.2 \rangle, \langle 4; -0.1, -0.6 \rangle \}.$$

Then $C = (f_C, g_C)$ is a coupled \mathcal{N} -subalgebra, but not a coupled \mathcal{N} -ideal of X since

$$f_{\mathcal{C}}(4) = -0.1 \nleq -0.5 = \bigvee \{ f_{\mathcal{C}}(4*3), f_{\mathcal{C}}(3) \}$$

and/or

$$g_{\mathcal{C}}(4) = -0.6 \ngeq -0.2 = \bigwedge \{g_{\mathcal{C}}(4*3), g_{\mathcal{C}}(3)\}.$$

(2) Let $X = \{0, a, b, c\}$ be a set with the following Cayley table:

*	0	a	b	c
0	0	0	0	c
$a \\ b$	a	0	0	a
	b	a	0	b
c	c	c	c	0

Then (X; *, 0) is a BH-algebra, which is not a BCK/BCI-algebra. Let $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ be a coupled \mathcal{N} -structure in X defined by

$$C = \{ \langle 0; -0.8, -0.2 \rangle, \langle a; -0.4, -0.5 \rangle, \langle b; -0.4, -0.5 \rangle, \langle c; -0.2, -0.6 \rangle \}.$$

It is easy to check that $C = (f_C, g_C)$ is both a coupled \mathcal{N} -subalgebra and a coupled \mathcal{N} -ideal of X.

(3) Let $X = \{0, 1, 2, 3\}$ be a BH-algebra([5]), which is not a BCK/BCI-algebra, with the following Cayley table:

*	0	1	2	3
0	0	1	3	0
1	1	0	2	0
$\frac{1}{2}$	$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	2	0	3
3	3	3	3	0

Let $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ be a coupled \mathcal{N} -structure in X defined by

$$\mathcal{C} = \{ \langle 0; -0.7, -0.2 \rangle, \langle 1; -0.5, -0.4 \rangle, \langle 2; -0.5, -0.4 \rangle, \langle 3; -0.3, -0.6 \rangle \}.$$

Then $\mathcal{C}=(f_{\mathcal{C}},g_{\mathcal{C}})$ is a coupled \mathcal{N} -ideal of X, but not a coupled \mathcal{N} -subalgebra of X, since

$$f_{\mathcal{C}}(0*2) = f_{\mathcal{C}}(3) = -0.3 \nleq -0.5 = \bigvee \{f_{\mathcal{C}}(0), f_{\mathcal{C}}(2)\}\$$

and/or

$$g_{\mathcal{C}}(0*2) = g_{\mathcal{C}}(3) = -0.6 \ngeq -0.4 = \bigwedge \{g_{\mathcal{C}}(0), g_{\mathcal{C}}(2)\}.$$

Proposition 3.8.([4]) Every coupled N-ideal of a BH-algebra X satisfies the following assertions:

- (i) $(\forall x, y, z \in X)(x * y \leq z \Rightarrow f_{\mathcal{C}}(x) \leq \bigvee \{f_{\mathcal{C}}(y), f_{\mathcal{C}}(z)\}, g_{\mathcal{C}}(x) \geq \bigwedge \{g_{\mathcal{C}}(y), g_{\mathcal{C}}(z)\}$).
- (ii) $(\forall x, y \in X)(x \le y \Rightarrow f_{\mathcal{C}}(x) \le f_{\mathcal{C}}(y), g_{\mathcal{C}}(x) \ge g_{\mathcal{C}}(y)).$

Theorem 3.9.([4]) For a coupled \mathcal{N} -structure $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ in a BH-algebra X, the following are equivalent:

- (1) $C = (f_C, g_C)$ is a coupled \mathcal{N} -ideal of X.
- (2) The nonempty $\mathcal{N}(t,s)$ -level set $\mathcal{N}\{(f_{\mathcal{C}},g_{\mathcal{C}});(t,s)\}$ is an ideal of X for all $t,s\in[-1,0]$ with $t+s\geq-1$.

Definition 3.10. A coupled \mathcal{N} -structure $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ in a BH-algebra X is called a *coupled strong* \mathcal{N} -ideal of X if it satisfies (c81) and (c83) $f_{\mathcal{C}}(x*z) \leq \bigvee \{f_{\mathcal{C}}((x*y)*z), f_{\mathcal{C}}(y)\}$ and $g_{\mathcal{C}}(x*z) \geq \bigwedge \{g_{\mathcal{C}}((x*y)*z), g_{\mathcal{C}}(y)\}$ for all $x, y \in X$.

Example 3.11. (1) Consider a BH-algebra $X = \{0, 1, 2, 3, 4, 5\}$ and a coupled \mathcal{N} -structure $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ as in Example 3.7(1). Then $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ is a coupled \mathcal{N} -subalgebra of X, but not a coupled \mathcal{N} -ideal of X (see Example 3.7(1)). Also it is not not a coupled strong \mathcal{N} -ideal of X since

$$f_{\mathcal{C}}(4*2) = -0.1 \nleq -0.6 = \bigvee \{f_{\mathcal{C}}((4*1)*2), f_{\mathcal{C}}(1)\}$$

and/or

$$g_{\mathcal{C}}(4*2) = -0.6 \ngeq -0.2 = \bigwedge \{g_{\mathcal{C}}((4*1)*2), g_{\mathcal{C}}(1)\}.$$

(2) Let $X = \{0, 1, 2, 3\}$ be a BH-algebra as in Example 3.7(1). Let $\mathcal{D} = (f_{\mathcal{D}}, g_{\mathcal{D}})$ be a coupled \mathcal{N} -structure in X defined by

$$\mathcal{D} = \left\{ \langle 0; -0.7, -0.1 \rangle, \quad \langle 1; -0.6, -0.2 \rangle, \langle 2; -0.3, -0.5 \rangle, \\ \langle 3; -0.3, -0.5 \rangle, \langle 4; -0.3, -0.5 \rangle \right\}.$$

It is easy to show that $\mathcal{D} = (f_{\mathcal{D}}, g_{\mathcal{D}})$ is both a coupled \mathcal{N} -subalgebra and a coupled \mathcal{N} -ideal of X, but not a coupled strong \mathcal{N} -ideal of X, since

$$f_{\mathcal{D}}(4*2) = f_{\mathcal{D}}(4) = -0.3 \nleq -0.6 = \bigvee \{ f_{\mathcal{D}}((4*1)*2), f_{\mathcal{D}}(1) \}$$

and/or

$$g_{\mathcal{D}}(4*2) = g_{\mathcal{D}}(4) = -0.5 \ngeq -0.2 = \bigwedge \{g_{\mathcal{D}}((4*1)*2), g_{\mathcal{D}}(1)\}.$$

(3) Let $X := \{0, 1, 2, 3, 4, 5\}$ be a BH-algebra ([1]), which is not a BCK/BCI-algebra, with the following Cayley table:

*	0	1	2	3	4	5
0	0 1 2 3 4 5	0	0	0	0	5
1	1	0	0	0	0	1
2	2	2	0	0	0	1
3	3	2	1	0	1	1
4	4	4	4	4	0	1
5	5	5	5	5	5	0

Let $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ be a coupled \mathcal{N} -structure in X defined by

$$C = \{ \langle 0; -0.8, -0.2 \rangle, \langle 1; -0.7, -0.3 \rangle, \langle 2; -0.7, -0.3 \rangle, \\ \langle 3; -0.7, -0.3 \rangle, \langle 4; -0.7, -0.3 \rangle, \langle 5; -0.2, -0.5 \rangle \}.$$

It is easy to check that $C = (f_C, g_C)$ is both a coupled \mathcal{N} -ideal of X and a coupled strong \mathcal{N} -ideal of X.

Theorem 3.12. For a coupled \mathcal{N} -structure $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ in a BH-algebra X, the following are equivalent:

- (1) $C = (f_C, g_C)$ is a coupled strong \mathcal{N} -ideal of X.
- (2) The nonempty $\mathcal{N}(t,s)$ -level set $\mathcal{N}\{(f_{\mathcal{C}},g_{\mathcal{C}});(t,s)\}$ is a strong ideal of X for all $t,s\in[-1,0]$ with $t+s\geq -1$.

Proof. Assume that $C = (f_C, g_C)$ is a coupled strong \mathcal{N} -ideal of X. Let $t, s \in [-1, 0]$ be such that $t + s \ge -1$. Obviously, $0 \in \mathcal{N}\{(f_C, g_C); (t, s)\}$. Let $x, y, z \in X$ be such that $(x * y) * z, y \in \mathcal{N}\{(f_C, g_C); (t, s)\}$. Then $f_C((x * y) * z) \le t$, $f_C(y) \le t$ and $g_C((x * y) * z) \ge s$, $g_C(y) \ge s$. It follows from (c83) that $f_C(x * z) \le \bigvee \{f_C((x * y) * z), f_C(y)\} \le t$ and $g_C(x * z) \ge \bigwedge \{g_C((x * y) * z), g_C(y)\} \ge s$, which imply that $x * z \in \mathcal{N}\{(f_C, g_C); (t, s)\}$. Hence the nonempty $\mathcal{N}(t, s)$ -level set of $C = (f_C, g_C)$ is a strong ideal of X for all $t, s \in [-1, 0]$ with $t + s \ge -1$.

Conversely, suppose that the nonempty $\mathcal{N}(t,s)$ -level set of $\mathcal{C}=(f_{\mathcal{C}},g_{\mathcal{C}})$ is a strong ideal of X for all $t,s \in [-1,0]$ with $t+s \geq -1$. Since $0 \in \mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t, s)\}$, the condition (c81) is valid. Assume that there exist $a, b, c \in X$ such that $f_{\mathcal{C}}(a*c) > \bigvee \{f_{\mathcal{C}}((a*b)*c), f_{\mathcal{C}}(b)\}\ \text{or}\ g_{\mathcal{C}}(a*c) < g_{\mathcal{C}}(a*c) = g_{\mathcal{C}}(a*c)$ $\bigwedge \{g_{\mathcal{C}}((a*b)*c), g_{\mathcal{C}}(b)\}\$. For the case $f_{\mathcal{C}}(a*c) > \bigvee \{f_{\mathcal{C}}((a*b)*c), f_{\mathcal{C}}(b)\}\$ and $g_{\mathcal{C}}(a*c) \geq \bigwedge \{g_{\mathcal{C}}((a*b)*c), g_{\mathcal{C}}(b)\}$, there exist $s_0, t_0 \in [-1, 0)$ such that $f_{\mathcal{C}}(a*c) > t_0 > \bigvee \{f_{\mathcal{C}}((a*b)*c), f_{\mathcal{C}}(b)\}$ and $s_0 = \bigwedge \{g_{\mathcal{C}}((a*b)*c), f_{\mathcal{C}}(b)\}$ $(b)*c), g_{\mathcal{C}}(b)$. It follows that $(a*b)*c, b \in \mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t_0, s_0)\}$, but $a*c \notin \mathcal{N}\{(f_{\mathcal{C}},g_{\mathcal{C}});(t_0,s_0)\}$. This is impossible. For the case $f_{\mathcal{C}}(a*c) \geq$ $\bigvee \{f_{\mathcal{C}}((a*b)*c), f_{\mathcal{C}}(b)\}\$ and $g_{\mathcal{C}}(a*c) < \bigwedge \{g_{\mathcal{C}}((a*b)*c), g_{\mathcal{C}}(b)\},\$ there exist $s_0, t_0 \in [-1, 0)$ such that $t_0 = f_{\mathcal{C}}(a * b)$ and $g_{\mathcal{C}}(a * c) < s_0 <$ $\bigwedge \{g_{\mathcal{C}}((a*b)*c), g_{\mathcal{C}}(b)\}\$. Then $(a*b)*c, b \in \mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t_0, s_0)\}\$, but $a*c \notin \mathcal{N}\{(f_{\mathcal{C}},g_{\mathcal{C}});(t_0,s_0)\}$. This is a contradiction. If $f_{\mathcal{C}}(a*c) >$ $\bigvee \{ f_{\mathcal{C}}((a*b)*c), f_{\mathcal{C}}(b) \}$ and $g_{\mathcal{C}}(a*c) < \bigwedge \{ g_{\mathcal{C}}((a*b)*c), g_{\mathcal{C}}(b) \}$, then $(a*b)*c, b \in \mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t_0, s_0)\}, \text{ but } a*c \notin \mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t_0, s_0)\}, \text{ where } t_0 := \frac{1}{2}(f_{\mathcal{C}}(a*c) + \bigvee\{f_{\mathcal{C}}((a*b)*c), f_{\mathcal{C}}(b)\}) \text{ and } s_0 := \frac{1}{2}(g_{\mathcal{C}}(a*c) + \bigvee\{f_{\mathcal{C}}((a*b)*c), f_{\mathcal{C}}(b)\})$ $\Lambda\{g_{\mathcal{C}}((\bar{a}*b)*c),g_{\mathcal{C}}(b)\}$). This is a contradiction. Therefore $\mathcal{C}=(f_{\mathcal{C}},g_{\mathcal{C}})$ is a coupled strong \mathcal{N} -ideal of X.

Proposition 3.13. For any BH^* -algebra X, every coupled \mathcal{N} -ideal is a coupled \mathcal{N} -subalgebra of X.

Proof. Let a coupled \mathcal{N} -structure $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ be a coupled \mathcal{N} -ideal of a BH^* -algebra X and let $x, y \in X$. Then

$$f_{\mathcal{C}}(x*y) \leq \bigvee \left\{ f_{\mathcal{C}}((x*y)*x), f_{\mathcal{C}}(x) \right\} = \bigvee \left\{ f_{\mathcal{C}}(0), f_{\mathcal{C}}(x) \right\} \leq \bigvee \left\{ f_{\mathcal{C}}(x), f_{\mathcal{C}}(y) \right\}$$
 and

$$g_{\mathcal{C}}(x*y) \geq \bigwedge \left\{ g_{\mathcal{C}}((x*y)*x), g_{\mathcal{C}}(x) \right\} = \bigwedge \{ g_{\mathcal{C}}(0), g_{\mathcal{C}}(x) \} \geq \bigwedge \{ g_{\mathcal{C}}(x), g_{\mathcal{C}}(y) \}.$$

Hence
$$C = (f_C, g_C)$$
 is a coupled \mathcal{N} -subalgebra of X .

The converse of Theorem 3.13 may not be true in general as seen in the following example.

Example 3.14. Let $X = \{0, 1, 2, 3\}$ be a set with the following Cayley table:

*	0	1	2	3
0	0	0	0	0
1	1	0	0	0
$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$	$\frac{2}{3}$	1	0	1
3	3	3	3	0

It is easily to check that (X; *, 0) is a BH^* -algebra. Let $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ be a coupled \mathcal{N} -structure in X defined by

$$C = \{ \langle 0; -0.7, -0.1 \rangle, \langle 1; -0.7, -0.1 \rangle, \langle 2; -0.3, -0.5 \rangle, \langle 3; -0.6, -0.2 \rangle \}.$$

Then $C = (f_C, g_C)$ is a coupled \mathcal{N} -subalgebra, but not a coupled \mathcal{N} -ideal of X, since

$$f_{\mathcal{C}}(2) = -0.3 \nleq -0.6 = \bigvee \{f_{\mathcal{C}}(2*3), f_{\mathcal{C}}(3)\}$$

and/or

$$g_{\mathcal{C}}(2) = -0.5 \ngeq -0.2 = \bigwedge \{g_{\mathcal{C}}(2*3), g_{\mathcal{C}}(3)\}.$$

Proposition 3.15. Every coupled strong \mathcal{N} -ideal $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ of a BH-algebra X is a coupled \mathcal{N} -ideal of X.

Proof. Put
$$z := 0$$
 in (c83).

Proposition 3.16. Let $C = (f_C, g_C)$ be a coupled strong N-ideal of a BH-algebra X. Then the following hold:

- (i) If $x \leq y$ for any $x, y \in X$, then $f_{\mathcal{C}}(x) \leq f_{\mathcal{C}}(y)$, $g_{\mathcal{C}}(x) \geq g_{\mathcal{C}}(y)$.
- (ii) If $f_{\mathcal{C}}(x * y) = f_{\mathcal{C}}(0)$ for any $x, y \in X$, then $f_{\mathcal{C}}(x) \leq f_{\mathcal{C}}(y)$.
- (iii) If $g_{\mathcal{C}}(x * y) = g_{\mathcal{C}}(0)$ for any $x, y \in X$, then $g_{\mathcal{C}}(x) \ge g_{\mathcal{C}}(y)$.

Proof. (i) It follows from Proposition 3.8 and Proposition 3.15.

(ii) For any $x, y \in X$, we have

$$f_{\mathcal{C}}(x) = f_{\mathcal{C}}(x * 0) \le \bigvee \{ f_{\mathcal{C}}((x * y) * 0), f_{\mathcal{C}}(y * 0) \}$$

$$= \bigvee \{ f_{\mathcal{C}}(x * y), f_{\mathcal{C}}(y) \}$$

$$= \bigvee \{ f_{\mathcal{C}}(0), f_{\mathcal{C}}(y) \}$$

$$= f_{\mathcal{C}}(y).$$

(iii) For any $x, y \in X$, we have

$$g_{\mathcal{C}}(x) = g_{\mathcal{C}}(x*0) \ge \bigwedge \{g_{\mathcal{C}}((x*y)*0), g_{\mathcal{C}}(y*0)\}$$
$$= \bigwedge \{g_{\mathcal{C}}(x*y), g_{\mathcal{C}}(y)\}$$
$$= \bigwedge \{g_{\mathcal{C}}(0), g_{\mathcal{C}}(y)\}$$
$$= g_{\mathcal{C}}(y).$$

Proposition 3.17. Let $C = (f_C, g_C)$ be a coupled strong N-ideal of a BH^* -algebra X. Then the following hold:

- (i) $(\forall x, y \in X)(f_{\mathcal{C}}(x * y) \leq f_{\mathcal{C}}(x), g_{\mathcal{C}}(x * y) \geq g_{\mathcal{C}}(x)).$
- (ii) $(\forall x, y \in X)(f_{\mathcal{C}}(x*y) \leq \bigvee \{f_{\mathcal{C}}(x), f_{\mathcal{C}}(y)\}, g_{\mathcal{C}}(x*y) \geq \bigwedge \{g_{\mathcal{C}}(x), g_{\mathcal{C}}(y)\}).$
- (iii) $(\forall x, y, z \in X)(f_{\mathcal{C}}(x * (y * z)) \leq \bigvee \{f_{\mathcal{C}}(x), f_{\mathcal{C}}(y), f_{\mathcal{C}}(z)\}, g_{\mathcal{C}}(x * (y * z)) \geq \bigwedge \{g_{\mathcal{C}}(x), g_{\mathcal{C}}(y), g_{\mathcal{C}}(z)\}.$

Proof. (i) Since X is a BH^* -algebra, we have (x*y)*x=0 for any $x,y\in X$. Hence $x*y\leq x$ for any $x,y\in X$. Using Proposition 3.16(i), we have $f_{\mathcal{C}}(x*y)\leq f_{\mathcal{C}}(x)$ and $g_{\mathcal{C}}(x*y)\geq g_{\mathcal{C}}(x)$ for any $x,y\in X$.

- (ii) It is easily verified from Proposition 3.13 and Proposition 3.15.
- (iii) For any $x, y, z \in X$, using (ii) we have

$$f_{\mathcal{C}}(x * (y * z)) \le \bigvee \{f_{\mathcal{C}}(x), f_{\mathcal{C}}(y * z)\}$$

$$\le \bigvee \{f_{\mathcal{C}}(x), f_{\mathcal{C}}(y), f_{\mathcal{C}}(z)\}$$

and

$$g_{\mathcal{C}}(x * (y * z)) \ge \bigwedge \{g_{\mathcal{C}}(x), g_{\mathcal{C}}(y * z)\}$$
$$\ge \bigwedge \{g_{\mathcal{C}}(x), g_{\mathcal{C}}(y), g_{\mathcal{C}}(z)\}.$$

For any element a of a d-algebra X, let

$$X_a := \left\{ x \in X \mid f_{\mathcal{C}}(x) \le f_{\mathcal{C}}(a), \ g_{\mathcal{C}}(x) \ge g_{\mathcal{C}}(a) \right\}.$$

Obviously, X_a is a non-empty subset of X.

Theorem 3.18. Let a be any element of a BH-algebra X. If $C = (f_C, g_C)$ is a coupled (strong) \mathcal{N} -ideal of X, then the set X_a is a (strong) ideal of X.

Proof. Since $f_{\mathcal{C}}(0) \leq f_{\mathcal{C}}(x)$ and $g_{\mathcal{C}}(0) \geq g_{\mathcal{C}}(x)$ for any $x \in X$, we have $0 \in X_a$. Let $x, y \in X$ be such that $x * y \in X_a$ and $y \in X_a$. Then $f_{\mathcal{C}}(x * y) \leq f_{\mathcal{C}}(a), g_{\mathcal{C}}(x * y) \geq g_{\mathcal{C}}(a), f_{\mathcal{C}}(y) \leq f_{\mathcal{C}}(a)$ and $g_{\mathcal{C}}(y) \geq g_{\mathcal{C}}(a)$. It follows from (c82) that $f_{\mathcal{C}}(x) \leq \bigvee \{f_{\mathcal{C}}(x * y), f_{\mathcal{C}}(y)\} \leq f_{\mathcal{C}}(a)$ and $g_{\mathcal{C}}(x) \geq \bigwedge \{g_{\mathcal{C}}(x * y), g_{\mathcal{C}}(y)\} \geq g_{\mathcal{C}}(a)$ so that $x \in X_a$. Therefore X_a is an ideal of X.

Let $x, y, z \in X$ be such that $(x*y)*z \in X_a$ and $y \in X_a$. Then $f_{\mathcal{C}}((x*y)*z) \leq f_{\mathcal{C}}(a)$, $g_{\mathcal{C}}((x*y)*z) \geq g_{\mathcal{C}}(a)$, $f_{\mathcal{C}}(y) \leq f_{\mathcal{C}}(a)$ and $g_{\mathcal{C}}(y) \geq g_{\mathcal{C}}(a)$. It follows from (c83) that $g_{\mathcal{C}}(x*z) \leq \bigvee \{f_{\mathcal{C}}((x*y)*z), f_{\mathcal{C}}(y)\} \leq f_{\mathcal{C}}(a)$ and $g_{\mathcal{C}}(x*z) \leq \bigwedge \{g_{\mathcal{C}}((x*y)*z), g_{\mathcal{C}}(y)\} \geq g_{\mathcal{C}}(a)$ so that $x*z \in X_a$. Therefore X_a is a strong ideal of X.

Proposition 3.19. Let a be any element of a BH-algebra X and let $C = (f_C, g_C)$ be a coupled N-structure in X. Then

(i) If X_a is an ideal of X, then $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ satisfies the following assertion:

(3.2)

$$(\forall x, y, z \in X) \left(\begin{array}{l} f_{\mathcal{C}}(x) \geq \bigvee \left\{ f_{\mathcal{C}}(y * z), f_{\mathcal{C}}(z) \right\} \Rightarrow f_{\mathcal{C}}(x) \geq f_{\mathcal{C}}(y) \\ g_{\mathcal{C}}(x) \leq \bigwedge \left\{ g_{\mathcal{C}}(y * z), g_{\mathcal{C}}(z) \right\} \Rightarrow g_{\mathcal{C}}(x) \leq g_{\mathcal{C}}(y) \end{array} \right).$$

(ii) If $C = (f_C, g_C)$ satisfies (3.2) and

$$(3.3) \qquad (\forall x \in X) \left(f_{\mathcal{C}}(0) \le f_{\mathcal{C}}(x), \ g_{\mathcal{C}}(0) \ge g_{\mathcal{C}}(x) \right),$$

then X_a is an ideal of X.

- *Proof.* (i) Assume that X_a is an ideal of X for all $a \in X$. Let $x, y, z \in X$ be such that $f_{\mathcal{C}}(x) \geq \bigvee \{f_{\mathcal{C}}(y*z), f_{\mathcal{C}}(z)\}$ and $g_{\mathcal{C}}(x) \leq \bigwedge \{g_{\mathcal{C}}(y*z), g_{\mathcal{C}}(z)\}$. Then $y*z \in X_x$ and $z \in X_x$. Since X_x is an ideal of X, it follows that $y \in X_x$ so that $f_{\mathcal{C}}(y) \leq f_{\mathcal{C}}(x)$ and $g_{\mathcal{C}}(y) \geq g_{\mathcal{C}}(x)$.
- (ii) Suppose that $C = (f_C, g_C)$ satisfies two conditions (3.2) and (3.3). Let $x, y \in X$ be such that $x * y \in X_a$ and $y \in X_a$. Then $f_C(x * y) \leq f_C(a)$, $g_C(x * y) \geq g_C(a)$, $f_C(y) \leq f_C(a)$ and $g_C(y) \geq g_C(a)$. Hence $f_C(a) \geq \bigvee \{f_C(x * y), f_C(y)\}$ and $g_C(a) \leq \bigwedge \{g_C(x * y), g_C(y)\}$, which imply from

(3.2) that $f_{\mathcal{C}}(a) \geq f_{\mathcal{C}}(x)$ and $g_{\mathcal{C}}(a) \leq g_{\mathcal{C}}(x)$. Thus $x \in X_a$. Obviously, $0 \in X_a$. Therefore X_a is an ideal of X.

Theorem 3.20. Let $C = (f_C, g_C)$ be a coupled \mathcal{N} -structure in a BH-algebra X. Then X_a is a coupled \mathcal{N} -ideal of X for any $a \in X$ if and only if

- (i) $f_{\mathcal{C}}(0) \leq f_{\mathcal{C}}(a), g_{\mathcal{C}}(0) \geq g_{\mathcal{C}}(a)$.
- (ii) $(\forall x, y \in X)(f_{\mathcal{C}}(x * y) \leq f_{\mathcal{C}}(a) \text{ and } f_{\mathcal{C}}(y) \leq f_{\mathcal{C}}(a) \text{ imply } f_{\mathcal{C}}(x) \leq f_{\mathcal{C}}(a)$).
- (iii) $(\forall x, y \in X)(g_{\mathcal{C}}(x * y) \ge g_{\mathcal{C}}(a) \text{ and } g_{\mathcal{C}}(y) \ge g_{\mathcal{C}}(a) \text{ imply } g_{\mathcal{C}}(x) \ge g_{\mathcal{C}}(a)).$

Proof. Assume that X_a is a coupled \mathcal{N} -ideal of X. Then $0 \in X_a$ and so $f_{\mathcal{C}}(0) \leq f_{\mathcal{C}}(a)$ and $g_{\mathcal{C}}(0) \geq g_{\mathcal{C}}(a)$. Let $x, y, z \in X$ be such that $f_{\mathcal{C}}(x * y) \leq f_{\mathcal{C}}(a), g_{\mathcal{C}}(x * y) \geq g_{\mathcal{C}}(a), f_{\mathcal{C}}(y) \leq f_{\mathcal{C}}(a)$, and $g_{\mathcal{C}}(y) \geq g_{\mathcal{C}}(a)$. Then $x * y, y \in X_a$. Since X_a is an ideal of X, we have $x \in X_a$. Hence $f_{\mathcal{C}}(x) \leq f_{\mathcal{C}}(a)$ and $g_{\mathcal{C}}(x) \geq g_{\mathcal{C}}(a)$.

Conversely, consider X_a for any $a \in X$. Obviously, $0 \in X_a$ for any $a \in X$. Assume that $x * y, y \in X_a$. Then $f_{\mathcal{C}}(x * y) \leq f_{\mathcal{C}}(a), g_{\mathcal{C}}(x * y) \geq g_{\mathcal{C}}(a), f_{\mathcal{C}}(y) \leq f_{\mathcal{C}}(a)$, and $g_{\mathcal{C}}(y) \geq g_{\mathcal{C}}(a)$. It follows from hypothesis that $f_{\mathcal{C}}(x) \leq f_{\mathcal{C}}(a)$ and $g_{\mathcal{C}}(x) \geq g_{\mathcal{C}}(a)$. Hence $x \in X_a$. Thus X_a is a coupled \mathcal{N} -ideal of X.

4. Acknowledgements

The authors thank the referees for their valuable suggestions.

References

- [1] S. S. Ahn and J. H. Lee, Rough strong ideals in BH-algebras, Honam Math. J. $\bf 32(2010),\ 203\text{-}215.$
- [2] K. Iséki, On BCI-algebras, Mathe. Seminar Notes 8(1980), 125-130.
- [3] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Jpn. 23(1978), 1-26.
- [4] Y. B. Jun, S. S. Ahn and D. R. Prince Williams, Coupled N-structures and its applications in BCK/BCI-algebras, Iranian J. Sci. Tech. (in press).
- [5] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Scientae Math. 1(1998), 347-354.
- [6] D. Mundici, MV-algebras are categorically equivalent to bounded commutative BCK-algebras, Math. Jpn. 31(1986), 889-894.
- [7] J. Meng, Implicative commutative semigroups are equivalent to a class of BCKalgebras, Semigroup Forum 50(1995), 89-96.
- [8] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa, Seoul, 1994.

- [9] E. H. Roh and S. Y. Kim, On BH^* -subalgebras of transitive BH^* -algebras, Far East J. Math. Sci. 1(1999), 255-263.
- [10] Q. Zhang, Y. B. Jun and H. Roh, On the branch of BH-algebras, Sci. Math. Jpn. ${\bf 54}(2001),\,363\text{-}367.$

Min Jeong Seo Department of Mathematics Education, Dongguk University, Seoul 100-715, Korea. E-mail: cury13@naver.com

Sun Shin Ahn Department of Mathematics Education, Dongguk University, Seoul 100-715, Korea. E-mail: sunshine@dongguk.edu