APPLICATIONS OF COUPLED \mathcal{N}-STRUCTURES IN $B H$-ALGEBRAS

Min Jeong Seo and Sun Shin Ahn*

Abstract

The notions of a \mathcal{N}-subalgebra, a (strong) \mathcal{N}-ideal of BH -algebras are introduced, and related properties are investigated. Characterizations of a coupled \mathcal{N}-subalgebra and a coupled (strong) \mathcal{N}-ideals of $B H$-algebras are given. Relations among a coupled \mathcal{N}-subalgebra, a coupled \mathcal{N}-ideal and a coupled strong \mathcal{N} of BH -algebras are discussed.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: $B C K$-algebras and $B C I$-algebras ([2,3]). It is known that the class of $B C K$-algebras is a proper subclass of the class of $B C I$-algebras. $B C K$ algebras have some connections with other areas: D. Mundici [9] proved $M V$-algebras are categorically equivalent to bounded commutative algebra, and J. Meng [10] proved that implicative commutative semigroups are equivalent to a class of $B C K$-algebras. Y. B. Jun, E. H. Roh, and H. S. Kim [5] introduced the notion of a $B H$-algebra, which is a generalization of $B C K / B C I$-algebras. They defined the notions of ideal, maximal ideal and translation ideal and investigated some properties. E. H. Roh and S. Y. Kim [9] estimated the number of $B H^{*}$-subalgebras of order i in a transitive $B H^{*}$-algebras by using Hao's method. In [1], S. S. Ahn and J. H. Lee introduced the notion of strong ideals in $B H$-algebra and investigate some properties of it. They also defined the notion of a rough sets in $B H$-algebras. Using a strong ideal in $B H$-algebras, they obtained some relations between strong ideals and upper(lower) rough strong ideals in $B H$-algebras. Jun et.al([4]) introduced the notion of

[^0]coupled \mathcal{N}-structures and its application in $B C K / B C I$-algebras was discussed.

In this paper, we introduce the notions of a coupled \mathcal{N}-subalgebra, a coupled (strong) \mathcal{N}-ideals of $B H$-algebras are introduced, and related properties are investigated. Characterizations of a coupled \mathcal{N} subalgebra and a coupled (strong) \mathcal{N}-ideals of $B H$-algebras are given. Relations among a coupled \mathcal{N}-subalgebra, a coupled \mathcal{N}-ideal and a coupled strong \mathcal{N}-ideal of BH -algebras are discussed.

2. Preliminaries

By a $B H$-algebra $([5])$, we mean an algebra $(X ; *, 0)$ of type $(2,0)$ satisfying the following conditions:
(I) $x * x=0$,
(II) $x * 0=x$,
(III) $x * y=0$ and $y * x=0$ imply $x=y$, for all $x, y \in X$.

For brevity, we also call X a $B H$-algebra. In X we can define a binary operation " \leq " by $x \leq y$ if and only if $x * y=0$. A non-empty subset S of a $B H$-algebra X is called a subalgebra of X if, for any $x, y \in S$, $x * y \in S$, i.e., S is a closed under binary operation.
Definition 2.1. ([5]) A non-empty subset A of a $B H$-algebra X is called an ideal of X if it satisfies:
(I1) $0 \in A$,
(I2) $x * y \in A$ and $y \in A$ imply $x \in A, \forall x, y \in X$.
An ideal A of a $B H$-algebra X is said to be a translation ideal of X if it satisfies:
(I3) $x * y \in A$ and $y * x \in A$ imply $(x * z) *(y * z) \in A$ and $(z * x) *(z * y) \in$ $A, \forall x, y, z \in X$.

Definition 2.2.([9]) A $B H$-algebra X is called a $B H^{*}$-algebra if it satisfies the identity $(x * y) * x=0$ for all $x, y \in X$.
Example 2.3.([5]) Let $X:=\{0, a, b, c\}$ be a $B H$-algebra which is not a $B C K$-algebra with the following Cayley table:

$*$	0	1	2	3
0	0	1	0	0
1	1	0	0	0
2	2	2	0	3
3	3	3	3	0

Then $A:=\{0,1\}$ is a translation ideal of X.
Definition 2.4.([1]) A non-empty subset A of a $B H$-algebra X is called a strong ideal of X if it satisfies (I1) and
(I4) $(x * y) * z, y \in A$ imply $x * z \in A$.
Lemma 2.5.([1]) In a $B H$-algebra, any strong ideal is an ideal.
Lemma 2.6.([1]) In a $B H^{*}$-algebra X, any ideal is a subalgebra.
Corollary 2.7.([1]) Any strong ideal of $B H^{*}$-algebra is a subalgebra.

3. Coupled \mathcal{N}-structures applied to subalgebras and ideals in BH -algebras

Definition 3.1.([4]) A coupled \mathcal{N}-structure \mathcal{C} in a nonempty set X is an object of the form

$$
\mathcal{C}=\left\{\left\langle x ; f_{\mathcal{C}}, g_{\mathcal{C}}\right\rangle: x \in X\right\}
$$

where $f_{\mathcal{C}}$ and $g_{\mathcal{C}}$ are \mathcal{N}-functions on X such that $-1 \leq f_{\mathcal{C}}(x)+g_{\mathcal{C}}(x) \leq 0$ for all $x \in X$.

A coupled \mathcal{N}-structure $\mathcal{C}=\left\{\left\langle x ; f_{\mathcal{C}}, g_{\mathcal{C}}\right\rangle: x \in X\right\}$ in X can be identified to an ordered pair $\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ in $\mathcal{F}(X,[-1,0]) \times \mathcal{F}(X,[-1,0])$. For the sake of simplicity, we shall use the notation $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ instead of $\mathcal{C}=\left\{\left\langle x ; f_{\mathcal{C}}, g_{\mathcal{C}}\right\rangle: x \in X\right\}$.

For a coupled \mathcal{N}-structure $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ in X and $t, s \in[-1,0]$ with $t+s \geq-1$, the set

$$
\mathcal{N}\left\{\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right) ;(t, s)\right\}=\left\{x \in X \mid f_{\mathcal{C}}(x) \leq t, g_{\mathcal{C}}(x) \geq s\right\}
$$

is called an $\mathcal{N}(t, s)$-level set of $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$. An $\mathcal{N}(t, t)$-level set of $\mathcal{C}=$ $\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ is called an \mathcal{N}-level set of $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$.
Definition 3.2.([4]) A coupled \mathcal{N}-structure $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ in a BH algebra X is called a coupled \mathcal{N}-subalgebra of X if it satisfies:
(3.1) $f_{\mathcal{C}}(x * y) \leq \bigvee\left\{f_{\mathcal{C}}(x), f_{\mathcal{C}}(y)\right\}$ and $g_{\mathcal{C}}(x * y) \geq \bigwedge\left\{g_{\mathcal{C}}(x), g_{\mathcal{C}}(y)\right\}$ for all $x, y \in X$.

Theorem 3.3.([4]) A coupled \mathcal{N}-structure $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ in a $B H$-algebra X is a coupled \mathcal{N}-subalgebra of X if and only if the nonempty $\mathcal{N}(t, s)$ level set $\mathcal{N}\left\{\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right) ;(t, s)\right\}$ is a subalgebra of X for all $t, s \in[-1,0]$ with $t+s \geq-1$.

Lemma 3.4.([4]) Every coupled \mathcal{N}-subalgebra $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ of a BH algebra X satisfies $f_{\mathcal{C}}(0) \leq f_{\mathcal{C}}(x)$ and $g_{\mathcal{C}}(0) \geq g_{\mathcal{C}}(x)$ for all $x \in X$.

Proposition 3.5. If every \mathcal{N}-subalgebra $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ of a $B H$-algebra X satisfies the inequalities $f_{\mathcal{C}}(x * y) \leq f_{\mathcal{C}}(y)$ and $g_{\mathcal{C}}(x * y) \geq g_{\mathcal{C}}(y)$ for any $x, y \in X$, then $f_{\mathcal{C}}$ and $g_{\mathcal{C}}$ are constant functions.

Proof. Let $x \in X$. Using (II) and assumption, we have $f_{\mathcal{C}}(x)=f_{\mathcal{C}}(x *$ $0) \leq f_{\mathcal{C}}(0)$ and $g_{\mathcal{C}}(x)=g_{\mathcal{C}}(x * 0) \geq g_{\mathcal{C}}(0)$. It follows from Lemma 3.4 that $f_{\mathcal{C}}(x)=f_{\mathcal{C}}(0)$ and $g_{\mathcal{C}}(x)=g_{\mathcal{C}}(0)$. Hence $f_{\mathcal{C}}$ and $g_{\mathcal{C}}$ are constant functions.

Definition 3.6.([4]) A coupled \mathcal{N}-structure $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ in a BH algebra X is called a coupled \mathcal{N}-ideal of X if it satisfies:
(c81) $f_{\mathcal{C}}(0) \leq f_{\mathcal{C}}(x)$ and $g_{\mathcal{C}}(0) \geq g_{\mathcal{C}}(x)$,
(c82) $f_{\mathcal{C}}(x) \leq \bigvee\left\{f_{\mathcal{C}}(x * y), f_{\mathcal{C}}(y)\right\}$ and $g_{\mathcal{C}}(x) \geq \wedge\left\{g_{\mathcal{C}}(x * y), g_{\mathcal{C}}(y)\right\}$,
for all $x, y \in X$.
Example 3.7. (1) Let $X=\{0,1,2,3,4\}$ be a $B H$-algebra([1]), which is not a BCK/BCI-algebra, with the following Cayley table:

$*$	0	1	2	3	4
0	0	0	0	0	4
1	1	0	1	0	0
2	2	2	0	0	0
3	3	3	1	0	0
4	4	3	4	3	0

Let $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ be a coupled \mathcal{N}-structure in X defined by
$\mathcal{C}=\{\langle 0 ;-0.8,-0.2\rangle, \quad\langle 1 ;-0.6,-0.2\rangle,\langle 2 ;-0.5,-0.2\rangle$,

$$
\langle 3 ;-0.5,-0.2\rangle,\langle 4 ;-0.1,-0.6\rangle\} .
$$

Then $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ is a coupled \mathcal{N}-subalgebra, but not a coupled \mathcal{N}-ideal of X since

$$
f_{\mathcal{C}}(4)=-0.1 \not \equiv-0.5=\bigvee\left\{f_{\mathcal{C}}(4 * 3), f_{\mathcal{C}}(3)\right\}
$$

and/or

$$
g_{\mathcal{C}}(4)=-0.6 \nsupseteq-0.2=\bigwedge\left\{g_{\mathcal{C}}(4 * 3), g_{\mathcal{C}}(3)\right\} .
$$

(2) Let $X=\{0, a, b, c\}$ be a set with the following Cayley table:

$*$	0	a	b	c
0	0	0	0	c
a	a	0	0	a
b	b	a	0	b
c	c	c	c	0

Then $(X ; *, 0)$ is a $B H$-algebra, which is not a BCK/BCI-algebra. Let $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ be a coupled \mathcal{N}-structure in X defined by
$\mathcal{C}=\{\langle 0 ;-0.8,-0.2\rangle,\langle a ;-0.4,-0.5\rangle,\langle b ;-0.4,-0.5\rangle,\langle c ;-0.2,-0.6\rangle\}$.
It is easy to check that $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ is both a coupled \mathcal{N}-subalgebra and a coupled \mathcal{N}-ideal of X.
(3) Let $X=\{0,1,2,3\}$ be a $B H$-algebra([5]), which is not a BCK/BCIalgebra, with the following Cayley table:

$*$	0	1	2	3
0	0	1	3	0
1	1	0	2	0
2	2	2	0	3
3	3	3	3	0

Let $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ be a coupled \mathcal{N}-structure in X defined by
$\mathcal{C}=\{\langle 0 ;-0.7,-0.2\rangle,\langle 1 ;-0.5,-0.4\rangle,\langle 2 ;-0.5,-0.4\rangle,\langle 3 ;-0.3,-0.6\rangle\}$.
Then $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ is a coupled \mathcal{N}-ideal of X, but not a coupled \mathcal{N} subalgebra of X, since

$$
f_{\mathcal{C}}(0 * 2)=f_{\mathcal{C}}(3)=-0.3 \npreceq-0.5=\bigvee\left\{f_{\mathcal{C}}(0), f_{\mathcal{C}}(2)\right\}
$$

and/or

$$
g_{\mathcal{C}}(0 * 2)=g_{\mathcal{C}}(3)=-0.6 \nsupseteq-0.4=\bigwedge\left\{g_{\mathcal{C}}(0), g_{\mathcal{C}}(2)\right\} .
$$

Proposition 3.8.([4]) Every coupled \mathcal{N}-ideal of a BH -algebra X satisfies the following assertions:
(i) $(\forall x, y, z \in X)\left(x * y \leq z \Rightarrow f_{\mathcal{C}}(x) \leq \bigvee\left\{f_{\mathcal{C}}(y), f_{\mathcal{C}}(z)\right\}, g_{\mathcal{C}}(x) \geq\right.$ $\left.\wedge\left\{g_{\mathcal{C}}(y), g_{\mathcal{C}}(z)\right\}\right)$.
(ii) $(\forall x, y \in X)\left(x \leq y \Rightarrow f_{\mathcal{C}}(x) \leq f_{\mathcal{C}}(y), g_{\mathcal{C}}(x) \geq g_{\mathcal{C}}(y)\right)$.

Theorem 3.9.([4]) For a coupled \mathcal{N}-structure $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ in a BH algebra X, the following are equivalent:
(1) $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ is a coupled \mathcal{N}-ideal of X.
(2) The nonempty $\mathcal{N}(t, s)$-level set $\mathcal{N}\left\{\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right) ;(t, s)\right\}$ is an ideal of X for all $t, s \in[-1,0]$ with $t+s \geq-1$.

Definition 3.10. A coupled \mathcal{N}-structure $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ in a $B H$-algebra X is called a coupled strong \mathcal{N}-ideal of X if it satisfies (c81) and (c83) $f_{\mathcal{C}}(x * z) \leq \bigvee\left\{f_{\mathcal{C}}((x * y) * z), f_{\mathcal{C}}(y)\right\}$ and $g_{\mathcal{C}}(x * z) \geq \bigwedge\left\{g_{\mathcal{C}}((x * y) * z), g_{\mathcal{C}}(y)\right\}$ for all $x, y \in X$.

Example 3.11. (1) Consider a $B H$-algebra $X=\{0,1,2,3,4,5\}$ and a coupled \mathcal{N}-structure $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ as in Example 3.7(1). Then $\mathcal{C}=$ $\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ is a coupled \mathcal{N}-subalgebra of X, but not a coupled \mathcal{N}-ideal of X (see Example 3.7(1)). Also it is not not a coupled strong \mathcal{N}-ideal of X since

$$
f_{\mathcal{C}}(4 * 2)=-0.1 \not \leq-0.6=\bigvee\left\{f_{\mathcal{C}}((4 * 1) * 2), f_{\mathcal{C}}(1)\right\}
$$

and/or

$$
g_{\mathcal{C}}(4 * 2)=-0.6 \nsupseteq-0.2=\bigwedge\left\{g_{\mathcal{C}}((4 * 1) * 2), g_{\mathcal{C}}(1)\right\} .
$$

(2) Let $X=\{0,1,2,3\}$ be a $B H$-algebra as in Example 3.7(1). Let $\mathcal{D}=\left(f_{\mathcal{D}}, g_{\mathcal{D}}\right)$ be a coupled \mathcal{N}-structure in X defined by
$\mathcal{D}=\{\langle 0 ;-0.7,-0.1\rangle, \quad\langle 1 ;-0.6,-0.2\rangle,\langle 2 ;-0.3,-0.5\rangle$,

$$
\langle 3 ;-0.3,-0.5\rangle,\langle 4 ;-0.3,-0.5\rangle\} .
$$

It is easy to show that $\mathcal{D}=\left(f_{\mathcal{D}}, g_{\mathcal{D}}\right)$ is both a coupled \mathcal{N}-subalgebra and a coupled \mathcal{N}-ideal of X, but not a coupled strong \mathcal{N}-ideal of X, since

$$
f_{\mathcal{D}}(4 * 2)=f_{\mathcal{D}}(4)=-0.3 \not \leq-0.6=\bigvee\left\{f_{\mathcal{D}}((4 * 1) * 2), f_{\mathcal{D}}(1)\right\}
$$

and/or

$$
g_{\mathcal{D}}(4 * 2)=g_{\mathcal{D}}(4)=-0.5 \nsupseteq-0.2=\bigwedge\left\{g_{\mathcal{D}}((4 * 1) * 2), g_{\mathcal{D}}(1)\right\} .
$$

(3) Let $X:=\{0,1,2,3,4,5\}$ be a $B H$-algebra ([1]), which is not a $B C K / B C I$-algebra, with the following Cayley table:

$*$	0	1	2	3	4	5
0	0	0	0	0	0	5
1	1	0	0	0	0	1
2	2	2	0	0	0	1
3	3	2	1	0	1	1
4	4	4	4	4	0	1
5	5	5	5	5	5	0

Let $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ be a coupled \mathcal{N}-structure in X defined by

$$
\begin{aligned}
\mathcal{C}=\left\{\begin{array}{ll}
\langle 0 ;-0.8,-0.2\rangle, & \langle 1 ;-0.7,-0.3\rangle,\langle 2 ;-0.7,-0.3\rangle, \\
& \langle 3 ;-0.7,-0.3\rangle,
\end{array}\langle 4 ;-0.7,-0.3\rangle,\langle 5 ;-0.2,-0.5\rangle\right\} .
\end{aligned}
$$

It is easy to check that $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ is both a coupled \mathcal{N}-ideal of X and a coupled strong \mathcal{N}-ideal of X.

Theorem 3.12. For a coupled \mathcal{N}-structure $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ in a $B H$ algebra X, the following are equivalent:
(1) $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ is a coupled strong \mathcal{N}-ideal of X.
(2) The nonempty $\mathcal{N}(t, s)$-level set $\mathcal{N}\left\{\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right) ;(t, s)\right\}$ is a strong ideal of X for all $t, s \in[-1,0]$ with $t+s \geq-1$.

Proof. Assume that $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ is a coupled strong \mathcal{N}-ideal of X. Let $t, s \in[-1,0]$ be such that $t+s \geq-1$. Obviously, $0 \in \mathcal{N}\left\{\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right) ;(t, s)\right\}$. Let $x, y, z \in X$ be such that $\left.(x * y) * z, y \in \mathcal{N}\left\{\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right) ;(t, s)\right)\right\}$. Then $f_{\mathcal{C}}((x * y) * z) \leq t, f_{\mathcal{C}}(y) \leq t$ and $g_{\mathcal{C}}((x * y) * z) \geq s, g_{\mathcal{C}}(y) \geq s$. It follows from (c83) that $f_{\mathcal{C}}(x * z) \leq \bigvee\left\{f_{\mathcal{C}}((x * y) * z), f_{\mathcal{C}}(y)\right\} \leq t$ and $g_{\mathcal{C}}(x * z) \geq$ $\wedge\left\{g_{\mathcal{C}}((x * y) * z), g_{\mathcal{C}}(y)\right\} \geq s$, which imply that $x * z \in \mathcal{N}\left\{\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right) ;(t, s)\right\}$. Hence the nonempty $\mathcal{N}(t, s)$-level set of $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ is a strong ideal of X for all $t, s \in[-1,0]$ with $t+s \geq-1$.

Conversely, suppose that the nonempty $\mathcal{N}(t, s)$-level set of $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ is a strong ideal of X for all $t, s \in[-1,0]$ with $t+s \geq-1$. Since $0 \in \mathcal{N}\left\{\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right) ;(t, s)\right\}$, the condition (c81) is valid. Assume that there exist $a, b, c \in X$ such that $f_{\mathcal{C}}(a * c)>\bigvee\left\{f_{\mathcal{C}}((a * b) * c), f_{\mathcal{C}}(b)\right\}$ or $g_{\mathcal{C}}(a * c)<$ $\wedge\left\{g_{\mathcal{C}}((a * b) * c), g_{\mathcal{C}}(b)\right\}$. For the case $f_{\mathcal{C}}(a * c)>\bigvee\left\{f_{\mathcal{C}}((a * b) * c), f_{\mathcal{C}}(b)\right\}$ and $g_{\mathcal{C}}(a * c) \geq \bigwedge\left\{g_{\mathcal{C}}((a * b) * c), g_{\mathcal{C}}(b)\right\}$, there exist $s_{0}, t_{0} \in[-1,0)$ such that $f_{\mathcal{C}}(a * c)>t_{0}>\bigvee\left\{f_{\mathcal{C}}((a * b) * c), f_{\mathcal{C}}(b)\right\}$ and $s_{0}=\bigwedge\left\{g_{\mathcal{C}}((a *\right.$ $\left.b) * c), g_{\mathcal{C}}(b)\right\}$. It follows that $(a * b) * c, b \in \mathcal{N}\left\{\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right) ;\left(t_{0}, s_{0}\right)\right\}$, but $a * c \notin \mathcal{N}\left\{\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right) ;\left(t_{0}, s_{0}\right)\right\}$. This is impossible. For the case $f_{\mathcal{C}}(a * c) \geq$ $\bigvee\left\{f_{\mathcal{C}}((a * b) * c), f_{\mathcal{C}}(b)\right\}$ and $g_{\mathcal{C}}(a * c)<\bigwedge\left\{g_{\mathcal{C}}((a * b) * c), g_{\mathcal{C}}(b)\right\}$, there exist $s_{0}, t_{0} \in[-1,0)$ such that $t_{0}=f_{\mathcal{C}}(a * b)$ and $g_{\mathcal{C}}(a * c)<s_{0}<$ $\wedge\left\{g_{\mathcal{C}}((a * b) * c), g_{\mathcal{C}}(b)\right\}$. Then $(a * b) * c, b \in \mathcal{N}\left\{\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right) ;\left(t_{0}, s_{0}\right)\right\}$, but $a * c \notin \mathcal{N}\left\{\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right) ;\left(t_{0}, s_{0}\right)\right\}$. This is a contradiction. If $f_{\mathcal{C}}(a * c)>$ $\bigvee\left\{f_{\mathcal{C}}((a * b) * c), f_{\mathcal{C}}(b)\right\}$ and $g_{\mathcal{C}}(a * c)<\bigwedge\left\{g_{\mathcal{C}}((a * b) * c), g_{\mathcal{C}}(b)\right\}$, then $(a * b) * c, b \in \mathcal{N}\left\{\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right) ;\left(t_{0}, s_{0}\right)\right\}$, but $a * c \notin \mathcal{N}\left\{\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right) ;\left(t_{0}, s_{0}\right)\right\}$, where $t_{0}:=\frac{1}{2}\left(f_{\mathcal{C}}(a * c)+\bigvee\left\{f_{\mathcal{C}}((a * b) * c), f_{\mathcal{C}}(b)\right\}\right)$ and $s_{0}:=\frac{1}{2}\left(g_{\mathcal{C}}(a * c)+\right.$ $\left.\wedge\left\{g_{\mathcal{C}}((a * b) * c), g_{\mathcal{C}}(b)\right\}\right)$. This is a contradiction. Therefore $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ is a coupled strong \mathcal{N}-ideal of X.

Proposition 3.13. For any $B H^{*}$-algebra X, every coupled \mathcal{N}-ideal is a coupled \mathcal{N}-subalgebra of X.

Proof. Let a coupled \mathcal{N}-structure $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ be a coupled \mathcal{N}-ideal of a $B H^{*}$-algebra X and let $x, y \in X$. Then
$f_{\mathcal{C}}(x * y) \leq \bigvee\left\{f_{\mathcal{C}}((x * y) * x), f_{\mathcal{C}}(x)\right\}=\bigvee\left\{f_{\mathcal{C}}(0), f_{\mathcal{C}}(x)\right\} \leq \bigvee\left\{f_{\mathcal{C}}(x), f_{\mathcal{C}}(y)\right\}$
and
$g_{\mathcal{C}}(x * y) \geq \bigwedge\left\{g_{\mathcal{C}}((x * y) * x), g_{\mathcal{C}}(x)\right\}=\bigwedge\left\{g_{\mathcal{C}}(0), g_{\mathcal{C}}(x)\right\} \geq \bigwedge\left\{g_{\mathcal{C}}(x), g_{\mathcal{C}}(y)\right\}$.
Hence $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ is a coupled \mathcal{N}-subalgebra of X.
The converse of Theorem 3.13 may not be true in general as seen in the following example.

Example 3.14. Let $X=\{0,1,2,3\}$ be a set with the following Cayley table:

$*$	0	1	2	3
0	0	0	0	0
1	1	0	0	0
2	2	1	0	1
3	3	3	3	0

It is easily to check that $(X ; *, 0)$ is a $B H^{*}$-algebra. Let $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ be a coupled \mathcal{N}-structure in X defined by
$\mathcal{C}=\{\langle 0 ;-0.7,-0.1\rangle,\langle 1 ;-0.7,-0.1\rangle,\langle 2 ;-0.3,-0.5\rangle,\langle 3 ;-0.6,-0.2\rangle\}$.
Then $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ is a a coupled \mathcal{N}-subalgebra, but not a coupled \mathcal{N} ideal of X, since

$$
f_{\mathcal{C}}(2)=-0.3 \not \leq-0.6=\bigvee\left\{f_{\mathcal{C}}(2 * 3), f_{\mathcal{C}}(3)\right\}
$$

and/or

$$
g_{\mathcal{C}}(2)=-0.5 \nsupseteq-0.2=\bigwedge\left\{g_{\mathcal{C}}(2 * 3), g_{\mathcal{C}}(3)\right\} .
$$

Proposition 3.15. Every coupled strong \mathcal{N}-ideal $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ of a $B H$-algebra X is a coupled \mathcal{N}-ideal of X.
Proof. Put $z:=0$ in (c83).
Proposition 3.16. Let $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ be a coupled strong \mathcal{N}-ideal of a $B H$-algebra X. Then the following hold:
(i) If $x \leq y$ for any $x, y \in X$, then $f_{\mathcal{C}}(x) \leq f_{\mathcal{C}}(y), g_{\mathcal{C}}(x) \geq g_{\mathcal{C}}(y)$.
(ii) If $f_{\mathcal{C}}(x * y)=f_{\mathcal{C}}(0)$ for any $x, y \in X$, then $f_{\mathcal{C}}(x) \leq f_{\mathcal{C}}(y)$.
(iii) If $g_{\mathcal{C}}(x * y)=g_{\mathcal{C}}(0)$ for any $x, y \in X$, then $g_{\mathcal{C}}(x) \geq g_{\mathcal{C}}(y)$.

Proof. (i) It follows from Proposition 3.8 and Proposition 3.15.
(ii) For any $x, y \in X$, we have

$$
\begin{aligned}
f_{\mathcal{C}}(x)=f_{\mathcal{C}}(x * 0) & \leq \bigvee\left\{f_{\mathcal{C}}((x * y) * 0), f_{\mathcal{C}}(y * 0)\right\} \\
& =\bigvee\left\{f_{\mathcal{C}}(x * y), f_{\mathcal{C}}(y)\right\} \\
& =\bigvee\left\{f_{\mathcal{C}}(0), f_{\mathcal{C}}(y)\right\} \\
& =f_{\mathcal{C}}(y) .
\end{aligned}
$$

(iii) For any $x, y \in X$, we have

$$
\begin{aligned}
g_{\mathcal{C}}(x)=g_{\mathcal{C}}(x * 0) & \geq \bigwedge\left\{g_{\mathcal{C}}((x * y) * 0), g_{\mathcal{C}}(y * 0)\right\} \\
& =\bigwedge\left\{g_{\mathcal{C}}(x * y), g_{\mathcal{C}}(y)\right\} \\
& =\bigwedge\left\{g_{\mathcal{C}}(0), g_{\mathcal{C}}(y)\right\} \\
& =g_{\mathcal{C}}(y)
\end{aligned}
$$

Proposition 3.17. Let $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ be a coupled strong \mathcal{N}-ideal of a $B H^{*}$-algebra X. Then the following hold:
(i) $(\forall x, y \in X)\left(f_{\mathcal{C}}(x * y) \leq f_{\mathcal{C}}(x), g_{\mathcal{C}}(x * y) \geq g_{\mathcal{C}}(x)\right)$.
(ii) $(\forall x, y \in X)\left(f_{\mathcal{C}}(x * y) \leq \bigvee\left\{f_{\mathcal{C}}(x), f_{\mathcal{C}}(y)\right\}, g_{\mathcal{C}}(x * y) \geq \bigwedge\left\{g_{\mathcal{C}}(x), g_{\mathcal{C}}(y)\right\}\right)$.
(iii) $(\forall x, y, z \in X)\left(f_{\mathcal{C}}(x *(y * z)) \leq \bigvee\left\{f_{\mathcal{C}}(x), f_{\mathcal{C}}(y), f_{\mathcal{C}}(z)\right\}, g_{\mathcal{C}}(x *(y *\right.$ $\left.z)) \geq \bigwedge\left\{g_{\mathcal{C}}(x), g_{\mathcal{C}}(y), g_{\mathcal{C}}(z)\right\}\right)$.

Proof. (i) Since X is a $B H^{*}$-algebra, we have $(x * y) * x=0$ for any $x, y \in X$. Hence $x * y \leq x$ for any $x, y \in X$. Using Proposition 3.16(i), we have $f_{\mathcal{C}}(x * y) \leq f_{\mathcal{C}}(x)$ and $g_{\mathcal{C}}(x * y) \geq g_{\mathcal{C}}(x)$ for any $x, y \in X$.
(ii) It is easily verified from Proposition 3.13 and Proposition 3.15.
(iii) For any $x, y, z \in X$, using (ii) we have

$$
\begin{aligned}
f_{\mathcal{C}}(x *(y * z)) & \leq \bigvee\left\{f_{\mathcal{C}}(x), f_{\mathcal{C}}(y * z)\right\} \\
& \leq \bigvee\left\{f_{\mathcal{C}}(x), f_{\mathcal{C}}(y), f_{\mathcal{C}}(z)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
g_{\mathcal{C}}(x *(y * z)) & \geq \bigwedge\left\{g_{\mathcal{C}}(x), g_{\mathcal{C}}(y * z)\right\} \\
& \geq \bigwedge\left\{g_{\mathcal{C}}(x), g_{\mathcal{C}}(y), g_{\mathcal{C}}(z)\right\}
\end{aligned}
$$

For any element a of a d-algebra X, let

$$
X_{a}:=\left\{x \in X \mid f_{\mathcal{C}}(x) \leq f_{\mathcal{C}}(a), g_{\mathcal{C}}(x) \geq g_{\mathcal{C}}(a)\right\}
$$

Obviously, X_{a} is a non-empty subset of X.
Theorem 3.18. Let a be any element of a $B H$-algebra X. If $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ is a coupled (strong) \mathcal{N}-ideal of X, then the set X_{a} is a (strong) ideal of X.

Proof. Since $f_{\mathcal{C}}(0) \leq f_{\mathcal{C}}(x)$ and $g_{\mathcal{C}}(0) \geq g_{\mathcal{C}}(x)$ for any $x \in X$, we have $0 \in X_{a}$. Let $x, y \in X$ be such that $x * y \in X_{a}$ and $y \in X_{a}$. Then $f_{\mathcal{C}}(x * y) \leq f_{\mathcal{C}}(a), g_{\mathcal{C}}(x * y) \geq g_{\mathcal{C}}(a), f_{\mathcal{C}}(y) \leq f_{\mathcal{C}}(a)$ and $g_{\mathcal{C}}(y) \geq g_{\mathcal{C}}(a)$. It follows from (c82) that $f_{\mathcal{C}}(x) \leq \bigvee\left\{f_{\mathcal{C}}(x * y), f_{\mathcal{C}}(y)\right\} \leq f_{\mathcal{C}}(a)$ and $g_{\mathcal{C}}(x) \geq \bigwedge\left\{g_{\mathcal{C}}(x * y), g_{\mathcal{C}}(y)\right\} \geq g_{\mathcal{C}}(a)$ so that $x \in X_{a}$. Therefore X_{a} is an ideal of X.

Let $x, y, z \in X$ be such that $(x * y) * z \in X_{a}$ and $y \in X_{a}$. Then $f_{\mathcal{C}}((x *$ $y) * z) \leq f_{\mathcal{C}}(a), g_{\mathcal{C}}((x * y) * z) \geq g_{\mathcal{C}}(a), f_{\mathcal{C}}(y) \leq f_{\mathcal{C}}(a)$ and $g_{\mathcal{C}}(y) \geq g_{\mathcal{C}}(a)$. It follows from $(\mathrm{c} 83)$ that $g_{\mathcal{C}}(x * z) \leq \bigvee\left\{f_{\mathcal{C}}((x * y) * z), f_{\mathcal{C}}(y)\right\} \leq f_{\mathcal{C}}(a)$ and $g_{\mathcal{C}}(x * z) \leq \bigwedge\left\{g_{\mathcal{C}}((x * y) * z), g_{\mathcal{C}}(y)\right\} \geq g_{\mathcal{C}}(a)$ so that $x * z \in X_{a}$. Therefore X_{a} is a strong ideal of X.

Proposition 3.19. Let a be any element of a $B H$-algebra X and let $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ be a coupled \mathcal{N}-structure in X. Then
(i) If X_{a} is an ideal of X, then $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ satisfies the following assertion:

$$
\begin{equation*}
(\forall x, y, z \in X)\binom{f_{\mathcal{C}}(x) \geq \bigvee\left\{f_{\mathcal{C}}(y * z), f_{\mathcal{C}}(z)\right\} \Rightarrow f_{\mathcal{C}}(x) \geq f_{\mathcal{C}}(y)}{g_{\mathcal{C}}(x) \leq \bigwedge\left\{g_{\mathcal{C}}(y * z), g_{\mathcal{C}}(z)\right\} \Rightarrow g_{\mathcal{C}}(x) \leq g_{\mathcal{C}}(y)} \tag{3.2}
\end{equation*}
$$

(ii) If $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ satisfies (3.2) and

$$
\begin{equation*}
(\forall x \in X)\left(f_{\mathcal{C}}(0) \leq f_{\mathcal{C}}(x), g_{\mathcal{C}}(0) \geq g_{\mathcal{C}}(x)\right) \tag{3.3}
\end{equation*}
$$

then X_{a} is an ideal of X.
Proof. (i) Assume that X_{a} is an ideal of X for all $a \in X$. Let $x, y, z \in X$ be such that $f_{\mathcal{C}}(x) \geq \bigvee\left\{f_{\mathcal{C}}(y * z), f_{\mathcal{C}}(z)\right\}$ and $g_{\mathcal{C}}(x) \leq \bigwedge\left\{g_{\mathcal{C}}(y * z), g_{\mathcal{C}}(z)\right\}$. Then $y * z \in X_{x}$ and $z \in X_{x}$. Since X_{x} is an ideal of X, it follows that $y \in X_{x}$ so that $f_{\mathcal{C}}(y) \leq f_{\mathcal{C}}(x)$ and $g_{\mathcal{C}}(y) \geq g_{\mathcal{C}}(x)$.
(ii) Suppose that $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ satisfies two conditions (3.2) and (3.3). Let $x, y \in X$ be such that $x * y \in X_{a}$ and $y \in X_{a}$. Then $f_{\mathcal{C}}(x * y) \leq f_{\mathcal{C}}(a)$, $g_{\mathcal{C}}(x * y) \geq g_{\mathcal{C}}(a), f_{\mathcal{C}}(y) \leq f_{\mathcal{C}}(a)$ and $g_{\mathcal{C}}(y) \geq g_{\mathcal{C}}(a)$. Hence $f_{\mathcal{C}}(a) \geq$ $\bigvee\left\{f_{\mathcal{C}}(x * y), f_{\mathcal{C}}(y)\right\}$ and $g_{\mathcal{C}}(a) \leq \bigwedge\left\{g_{\mathcal{C}}(x * y), g_{\mathcal{C}}(y)\right\}$, which imply from
(3.2) that $f_{\mathcal{C}}(a) \geq f_{\mathcal{C}}(x)$ and $g_{\mathcal{C}}(a) \leq g_{\mathcal{C}}(x)$. Thus $x \in X_{a}$. Obviously, $0 \in X_{a}$. Therefore X_{a} is an ideal of X.
Theorem 3.20. Let $\mathcal{C}=\left(f_{\mathcal{C}}, g_{\mathcal{C}}\right)$ be a coupled \mathcal{N}-structure in a BH algebra X. Then X_{a} is a coupled \mathcal{N}-ideal of X for any $a \in X$ if and only if
(i) $\left.f_{\mathcal{C}}(0) \leq f_{\mathcal{C}}(a), g_{\mathcal{C}}(0) \geq g_{\mathcal{C}}(a)\right)$.
(ii) $(\forall x, y \in X)\left(f_{\mathcal{C}}(x * y) \leq f_{\mathcal{C}}(a)\right.$ and $f_{\mathcal{C}}(y) \leq f_{\mathcal{C}}(a)$ imply $f_{\mathcal{C}}(x) \leq$ $f_{\mathcal{C}}(a)$).
(iii) $(\forall x, y \in X)\left(g_{\mathcal{C}}(x * y) \geq g_{\mathcal{C}}(a)\right.$ and $g_{\mathcal{C}}(y) \geq g_{\mathcal{C}}(a)$ imply $g_{\mathcal{C}}(x) \geq$ $\left.g_{\mathcal{C}}(a)\right)$.

Proof. Assume that X_{a} is a coupled \mathcal{N}-ideal of X. Then $0 \in X_{a}$ and so $f_{\mathcal{C}}(0) \leq f_{\mathcal{C}}(a)$ and $g_{\mathcal{C}}(0) \geq g_{\mathcal{C}}(a)$. Let $x, y, z \in X$ be such that $f_{\mathcal{C}}(x * y) \leq f_{\mathcal{C}}(a), g_{\mathcal{C}}(x * y) \geq g_{\mathcal{C}}(a), f_{\mathcal{C}}(y) \leq f_{\mathcal{C}}(a)$, and $g_{\mathcal{C}}(y) \geq g_{\mathcal{C}}(a)$. Then $x * y, y \in X_{a}$. Since X_{a} is an ideal of X, we have $x \in X_{a}$. Hence $f_{\mathcal{C}}(x) \leq f_{\mathcal{C}}(a)$ and $g_{\mathcal{C}}(x) \geq g_{\mathcal{C}}(a)$.

Conversely, consider X_{a} for any $a \in X$. Obviously, $0 \in X_{a}$ for any $a \in X$. Assume that $x * y, y \in X_{a}$. Then $f_{\mathcal{C}}(x * y) \leq f_{\mathcal{C}}(a), g_{\mathcal{C}}(x * y) \geq$ $g_{\mathcal{C}}(a), f_{\mathcal{C}}(y) \leq f_{\mathcal{C}}(a)$, and $g_{\mathcal{C}}(y) \geq g_{\mathcal{C}}(a)$. It follows from hypothesis that $f_{\mathcal{C}}(x) \leq f_{\mathcal{C}}(a)$ and $g_{\mathcal{C}}(x) \geq g_{\mathcal{C}}(a)$. Hence $x \in X_{a}$. Thus X_{a} is a coupled \mathcal{N}-ideal of X.

4. Acknowledgements

The authors thank the referees for their valuable suggestions.

References

[1] S. S. Ahn and J. H. Lee, Rough strong ideals in BH-algebras, Honam Math. J. 32(2010), 203-215.
[2] K. Iséki, On BCI-algebras, Mathe. Seminar Notes 8(1980), 125-130.
[3] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Jpn. 23(1978), 1-26.
[4] Y. B. Jun, S. S. Ahn and D. R. Prince Williams, Coupled \mathcal{N}-structures and its applications in $B C K / B C I$-algebras, Iranian J. Sci. Tech. (in press).
[5] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Scientae Math. 1(1998), 347-354.
[6] D. Mundici, MV-algebras are categorically equivalent to bounded commutative BCK-algebras, Math. Jpn. 31(1986), 889-894.
[7] J. Meng, Implicative commutative semigroups are equivalent to a class of BCKalgebras, Semigroup Forum 50(1995), 89-96.
[8] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa, Seoul, 1994.
[9] E. H. Roh and S. Y. Kim, On $B H^{*}$-subalgebras of transitive $B H^{*}$-algebras, Far East J. Math. Sci. 1(1999), 255-263.
[10] Q. Zhang, Y. B. Jun and H. Roh, On the branch of BH-algebras, Sci. Math. Jpn. 54(2001), 363-367.

Min Jeong Seo
Department of Mathematics Education, Dongguk University, Seoul 100-715, Korea.
E-mail: cury13@naver.com

Sun Shin Ahn
Department of Mathematics Education, Dongguk University, Seoul 100-715, Korea.
E-mail: sunshine@dongguk.edu

[^0]: Received October 23, 2012. Accepted December 4, 2012.
 2010 Mathematics Subject Classification. 06D72, 06F35, 03G25.
 Key words and phrases. Coupled \mathcal{N}-structure, Coupled \mathcal{N}-subalgerba, Coupled \mathcal{N}-ideal, Coupled strong \mathcal{N}-ideal.
 *Corresponding author.

