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NEIGHBORHOOD STRUCTURES IN ORDINARY

SMOOTH TOPOLOGICAL SPACES

Jeong Gon Lee, Pyung Ki Lim and Kul Hur∗

Abstract. We construct a new definition of a base for ordinary
smooth topological spaces and introduce the concept of a neigh-
borhood structure in ordinary smooth topological spaces. Then,
we state some of their properties which are generalizations of some
results in classical topological spaces.

1. Introduction

In 1985, Sostak [6] defined a fuzzy topology τ on a nonempty set X
as a mapping τ : IX → I satisfying three axioms, where IX denotes the
set of all fuzzy sets in X. He considered the degree of openness of fuzzy
sets, gave some basic rules and proved how such an extension can be
done. In 1992, Chattopadhyay et al. [1] studied the fuzzy topological
spaces in Sostak’s sense. In the same year, Ramadan [5] introduced sim-
ilar concepts under the name of smooth topological spaces working in
terms of lattices L and L′ instead of I = [0, 1]. In particular, Demirci [3]
introduced the concepts of neighborhood structures in smooth topologi-
cal spaces. Moreover, Ying [7] investigated fuzzifying topological spaces
(called ordinary smooth topological spaces by Hur et al. [4]) consider-
ing of degree of openness of ordinary subsets. Recently, Chae et al. [2]
constructed the set OST(X) of all ordinary smooth topologies on a set
X and studied it in the sense of a lattice.

In this paper,we construct a new definition of a base for ordinary
smooth topological spaces and introduce the concept of a neighborhood
structure in ordinary smooth topological spaces. Then, we state some
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of their properties which are generalizations of some results in classical
topological spaces.

2. Preliminaries

Let 2 = {0, 1} and let 2X denote the set of all ordinary subsets of X.
Definition 2.1[4]. Let X be an nonempty set. Then a mapping τ :
2X → I is called an ordinary smooth topology (in short, ost) on X or a
gradation of openness of ordinary subsets of X if τ satisfies the following
axioms:

(OST1) τ(∅) = τ(X) = 1.

(OST2) τ(A ∩B) ≥ τ(A) ∧ τ(B), ∀A,B ∈ 2X .

(OST3) τ(
⋃
α∈ΓAα) ≥

∧
α∈Γ τ(Aα), ∀{Aα} ⊂ 2X .

The pair (X, τ) is called an ordinary smooth topological space (in
short, osts). We will denote the set of all osts’s on X as OST(X).

Remark 2.2. Ying [7] called the mapping τ : 2X → I [resp. τ : IX → 2
and τ : IX → I] satisfying the axioms in Definition 2.1 as a fuzzyfying
topology [resp. fuzzy topology and bifuzzy topology] on X.

Remark 2.3. If I = 2, then Definition 2.1 coincides with the known
definition of the classical topology.

Definition 2.4. Let X be a nonempty set. Then a mapping C : 2X → I
is called an ordinary smooth cotopology (in short, osct) on X or a gra-
dation of closedness of ordinary subsets of X if C satisfies the following
axioms :

(OSCT1) C(∅) = C(X) = 1.

(OSCT2) C(A ∪B) ≥ C(A) ∧ C(B), ∀A,B ∈ 2X .

(OSCT3) C(
⋂
α∈Γ

Aα) ≥
∧
α∈Γ

C(Aα), ∀{Aα} ⊂ 2X .

The pair (X, C) is called an ordinary smooth cotopological space (in
short, oscts). We will denote the set of all oscts’s on X as OSCT(X).

Remark 2.5. If I = 2, then Definition 2.4 also coincides with the
known definition of the classical topology.

The following is the immediate result of Definition 2.1 and 2.4.
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Result 2.A[4, Proposition 2.7]. Let X be a nonempty set. We define
two mappings f : OST(X) → OSCT(X) and g : OSCT(X) → OST(X)
as follows, respectively :

[f(τ)](A) = τ(Ac), ∀τ ∈ OST(X), ∀A ∈ 2X

and

[g(C)](A) = C(Ac), ∀C ∈ OSCT(X), ∀A ∈ 2X .

Then f and g are well-defined. Furthermore g ◦ f = idOST(X) and
f ◦ g = idOSCT(X).

Remark 2.6. Let f(τ) = Cτ and g(C) = τC . Then, Result 2.A, we can
easily see that τCτ = τ and CτC = C.

Definition 2.7[4]. Let (X, τ) be an osts and let r ∈ I. Then we define
two ordinary subsets of X as follows :

[τ ]r = {A ∈ 2X : τ(A) ≥ r}
and

[τ ]∗r = {A ∈ 2X : τ(A) > r}.
We call these the r−level set and the strong r-level set of τ , respectively.

It is clear that [τ ]0 = 2X , the classical discrete topology on X and
[τ ]∗1 = ∅. Also it can be easily seen that [τ ]∗r ⊂ [τ ]r for each r ∈ I.

Result 2.B[4, Proposition 2.10]. Let (X, τ) be an osts and let T (X)
be the set of all classical topologies on X. Then :

(a) [τ ]r ∈ T(X), ∀r ∈ I.

(a)′ [τ ]∗r ∈ T(X), ∀r ∈ I1.

(b) For any r, s ∈ I, if r ≤ s, then [τ ]s ⊂ [τ ]r and [τ ]∗s ⊂ [τ ]∗r .

(c) [τ ]r =
⋂
s<r

[τ ]s, ∀r ∈ I0.

(c)′ [τ ]∗r =
⋃
s>r

[τ ]∗s, ∀r ∈ I1, where I0 = (0, 1] and I1 = [0, 1).

3. Main Results

For a mapping t : 2X → I and r ∈ I1, let us define the family
[t]∗r = {A ∈ 2X : t(A) > r} which will play an important role in our
study. From Result 2.B, it is clear that if t ∈ OST(X), then [t]∗r ∈ T (X).
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Definition 3.1. Let (X, τ) be an ordinary smooth topological space.
Then a mapping β : 2X → I is called an ordinary smooth base for τ if
[β]∗r is a classical base for [τ ]∗r .

Let (X,T ) be a classical topological space and for each p ∈ X and
let NT (p) denote the classical neighborhood system of p.

The following is the characterization of Definition 3.1.

Theorem 3.2. Let (X, τ) be an ordinary smooth topological space.
Then a mapping β : 2X → I is an ordinary smooth base for τ if and
only if for each r ∈ I1 and each p ∈ X, if A ∈ N[τ ]∗r

(p), then there exists
B ∈ [β]∗r such that p ∈ B ⊂ A.

Proof. (⇒) Suppose β : 2X → I is an ordinary smooth base for τ .
Then, by Definition 3.1, [β]∗r is a classical base for [τ ]∗r for each r ∈ I1.
For each p ∈ X, let A ∈ N[τ ]∗r

(p). Then there exists U ∈ [τ ]∗r such
that p ∈ U ⊂ A. Since U ∈ [τ ]∗r , there exists β0 ⊂ [β]∗r such that
U = ∪β0. Since p ∈ U , p ∈ ∪β0. Thus there exists B ∈ β0 such that
p ∈ B ⊂ U . So there exists B ∈ [β]∗r such that p ∈ B ⊂ A. (⇐) Suppose
the necessary condition holds. Assume that the mapping β : 2X → I is
not an ordinary smooth base for τ . Then, by Definition 3.1, there exist
r0 ∈ I1 and A ∈ [τ ]∗r0 such that A 6= ∪β′, ∀β′ ⊂ [β]∗r0 . Consider the
family β∗ = {B ∈ [β]∗r0 : B ⊂ A} and let G = ∪β∗. Then clearly A 6= G.
Thus there exists p ∈ X such that p ∈ A and p /∈ G. Since A ∈ [τ ]∗r0 and
p ∈ A, A ∈ N[τ ]∗r0

(p). By hypothesis, there exists B ∈ [β]∗r0 such that

p ∈ B ⊂ A. By the definition of β∗, B ∈ β∗. So B ⊂ G. Since p /∈ G,
p /∈ B. This is a contradiction. Hence the mapping β : 2X → I is an
ordinary smooth base for τ . This completes the proof.

The following is another characterization of Definition 3.1.

Theorem 3.3. Let (X, τ) be an ordinary smooth topological space.
Then a mapping β : 2X → I is an ordinary smooth base for τ if and
only if τ(A) ≤

∨
{β(B) : B ∈ 2X and p ∈ B ⊂ A} for each A ∈ 2X

with p ∈ A.

Proof. (⇒): Suppose β : 2X → I is an ordinary smooth base for τ .
Let A ∈ 2X with p ∈ A. Then clearly τ(A) = 0 or τ(A) 6= 0.

Case (i) : Suppose τ(A) = 0. Then the required inequality is obvious.
Case (ii) : Suppose τ(A) = r > 0. Let ε > 0 be arbitrary such that

ε ≤ r. Then clearly τ(A) > r − ε, i.e., A ∈ [τ ]∗r−ε. Thus A ∈ N[τ ]∗r−ε
(p).

By Theorem 3.2, there exists B ∈ [β]∗r−ε such that p ∈ B ⊂ A. So∨
{β(B) : B ∈ 2X and p ∈ B ⊂ A} > r− ε
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Since ε > 0 is arbitrary,∨
{β(B) : B ∈ 2X and p ∈ B ⊂ A} ≥ r = τ(A).

Hence, in any cases, the required inequality holds.
(⇐): Suppose the necessary condition holds. Let r ∈ I1 and let

U ∈ [τ ]∗r such that p ∈ U for each p ∈ X. Then, by the hypothesis,

α < τ(U) ≤
∨
{β(B) : B ∈ 2X and p ∈ B ⊂ U}.

Thus there exists B ∈ 2X such that p ∈ B ⊂ U and β(B) > α. So
B ∈ [β]∗α and p ∈ B ⊂ U , i.e., the necessary condition of Theorem 3.2 is
satisfied. Hence, by Theorem 3.2, β is an ordinary smooth base for τ .
This completes the proof.

Definition 3.4. Let (X, τ) be an ordinary smooth topological space
and let p ∈ X. Then a mapping Np : 2X → I is called the ordinary
smooth neighborhood system of p w.r.t. τ if [Np]

∗
r = N[τ ]∗r

(p), for each
r ∈ I1. In this case, we will call Np(A) as the degree of neighborhood of A
to p and each member of [Np]

∗
r is called an ordinary smooth neighborhood

of p.

The following is the characterization of Definition 3.4.

Theorem 3.5. Let (X, τ) be an ordinary smooth topological space
and let p ∈ X be fixed. Then a mapping Np : 2X → I is the ordinary
smooth neighborhood system of p if and only if for each A ∈ 2X ,

Np(A) =

{∨
{τ(V ) : V ∈ 2X and p ∈ V ⊂ A}, if p ∈ A,

0, if p /∈ A.

Proof. (⇒): Suppose Np : 2X → I is the ordinary smooth neigh-
borhood system of p w.r.t. τ and let A ∈ 2X . Then clearly p ∈ A or
p /∈ A.

Case (i) Suppose p /∈ A and Np(A) > 0. Then, from the hypothesis
and Definition 3.4, there exists U ∈ [τ ]∗0 such that p ∈ U ⊂ A. Thus
p ∈ A. This is a contradiction. So Np(A) = 0.

Case (ii) Suppose p ∈ A. Then we may have Np(A) = 0 or Np(A) > 0.
If Np(A) = 0, then it is obvious that

Np(A) = 0 ≤
∨
{τ(V ) : V ∈ 2X and p ∈ V ⊂ A}.

Furthermore, assume that∨
{τ(V ) : V ∈ 2X and p ∈ V ⊂ A} = β > 0.
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Then there exists V ∈ 2X such that τ(V ) > 0 and p ∈ V ⊂ A. Thus,
by the hypothesis and Definition 3.4, A ∈ [Np]

∗
0, i.e., Np(A) > 0. This

is a contradiction. So, for the case Np(A) = 0, we have

Np(A) =
∨
{τ(V ) : V ∈ 2X and p ∈ V ⊂ A} = 0.

Then, suppose Np(A) = r > 0. Let ε > 0 be arbitrary such that ε ≤ r.
Then Np(A) > r − ε, i.e., A ∈ [Np]

∗
r−ε. Since Np is an ordinary smooth

neighborhood system of p, there exists U ∈ [τ ]∗r−ε such that p ∈ U ⊂ A.
Thus ∨

{τ(V ) : V ∈ 2X and p ∈ V ⊂ A} > r− ε.
Since ε > 0 is arbitrary,∨

{τ(V ) : V ∈ 2X and p ∈ V ⊂ A} ≥ r = Np(A).

(3.1)
On the other hand, let

∨
{τ(V ) : V ∈ 2X and p ∈ V ⊂ A} = s.

Then clearly s > 0. Let ε > 0 be arbitrary such that ε ≤ s. Then
there exists V ∈ 2X such that τ(V ) > s − ε and p ∈ V ⊂ A. Thus
V ∈ [τ ]∗s−ε and p ∈ V ⊂ A. Thus, by the hypothesis, A ∈ [Np]

∗
s−ε. So

Np(A) > s− ε. Since ε > 0 is arbitrary,

Np(A) ≥ s =
∨
{τ(V ) : V ∈ 2X and p ∈ V ⊂ A}.

(3.2)
Hence, by (3.1) and (3.2).

Np(A) =
∨
{τ(V ) : V ∈ 2X and p ∈ V ⊂ A} for Np(A) > 0.

This completes the proof of the necessity.
(⇐): Suppose the mapping Np : 2X → I is given by

Np(A) =

{∨
{τ(V ) : V ∈ 2X and p ∈ V ⊂ A}, if p ∈ A,

0, if p /∈ A,

for each A ∈ 2X .
For each r ∈ I1, let U ∈ [Np]

∗
r , i.e., Np(U) > r. Then, from the hypoth-

esis,

r < Np(U) =
∨
{τ(V ) : V ∈ 2X and p ∈ V ⊂ U}

Thus there exists V ∈ 2X such that τ(V ) > r and p ∈ V ⊂ U . So
V ∈ [τ ]∗r and p ∈ V ⊂ U , i.e., U ∈ N[τ ]∗r

(p). Hence [Np]
∗
r ⊂ N[τ ]∗r

(p).
Now let r ∈ I1 and let U ∈ N[τ ]∗r

(p). Then there exists B ∈ [τ ]∗r
such that p ∈ B ⊂ U . Thus τ(B) > r and p ∈ B ⊂ U . So Np(U) =∨
{τ(V ) : V ∈ 2X and p ∈ V ⊂ U} > r, i.e., U ∈ [Np]

∗
r . Hence
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N[τ ]∗r
(p) ⊂ [Np]

∗
r . Therefore [Np]

∗
r = N[τ ]∗r

(p) for each r ∈ I1, i.e., Np is
the ordinary smooth neighborhood system of p w.r.t. τ .

The following is another characterization of Definition 3.4.

Theorem 3.6. Let (X, τ) be an ordinary smooth topological space
and let β : 2X → I be an ordinary smooth base for τ . Then a mapping
Np : 2X → I is the ordinary smooth neighborhood system of p w.r.t. τ
if and only if for each A ∈ 2X ,

Np(A) =

{∨
{β(U) : U ∈ 2X and p ∈ U ⊂ A}, if p ∈ A,

0, if p /∈ A,

where p ∈ X.

Proof. By considering Theorem 3.2 and Definition 3.4, we can easily
obtain that a mapping Np : 2X → I is the ordinary smooth neighbor-
hood system of p w.r.t. τ if and only if [Np]

∗
r = {U ∈ 2X : ∃B ∈ [β]∗r

such that p ∈ B ⊂ U}, for each r ∈ I1. Using this equivalence, the proof
is completed in a way similar to that of Theorem 3.5.

Proposition 3.7. Let (X, τ) be an ordinary smooth topological space
and let p ∈ X. If the mapping Np : 2X → I is the ordinary smooth
neighborhood system of p w.r.t. τ , then the followings hold:

(OSN1) If Np(U) > 0, then p ∈ U , where U ∈ 2X .

(OSN2)
∨
{Np(U) : U ∈ 2X} = 1

(OSN3) Np(U1 ∩ U2) ≥ Np(U1) ∧Np(U2), ∀U1, U2 ∈ 2X .

(OSN4) If U1 ⊂ U2 and U1, U2 ∈ 2X , then Np(U1) ≤ Np(U2).

(OSN5) ∀U ∈ 2X , Np(U) ≤
∨
{Np(V ) ∧ (

∧
e∈V Ne(V )) : V ∈ 2X

and V ⊂ U}.

Proof. (OSN1 ), (OSN2) and (OSN4) follows directly from Theorem
3.5.

(OSN3) Let U1, U2 ∈ 2X .
Case (i): Suppose Np(U1) = 0 or Np(U2) = 0. Then the required

inequality is obvious.
Case (ii): Suppose Np(U1) = r1 > 0 and Np(U2) = r2 > 0. Let ε > 0

be arbitrary such that ε ≤ r1 ∧ r2. Then

Np(U1) > r1 − ε ≥ 0

and

Np(U2) > r2 − ε ≥ 0.
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By Definition 3.4, there exist T1, T2 ∈ 2X such that

τ(T1) > r1 − ε and p ∈ T1 ⊂ U1

and

τ(T2) > r2 − ε and p ∈ T2 ⊂ U2.

Thus
τ(T1 ∩ T2) ≥ τ(T1) ∧ τ(T2) [Since τ ∈ OST(X)]

> (r1 − ε) ∧ (r2 − ε)
= (r1 ∧ r2)− ε.

and

p ∈ T1 ∩ T2 ⊂ U1 ∩ U2.

So, by the hypothesis,

Np(U1 ∩ U2) > (r1 ∧ r2)− ε.

Since ε > 0 is arbitrary,

Np(U1 ∩ U2) ≥ r1 ∧ r2 = Np(U1) ∧Np(U2).

(OSN5) Let U ∈ 2X .
Case (i): Suppose Np(U) = 0. Then the required inequality is obvi-

ous.
Case (ii): Suppose Np(U) = r > 0. Let ε > 0 be arbitrary such that

ε ≤ r. Then Np(U) > r−ε. Thus, by Definition 3.4, there exists V0 ∈ 2X

and τ(V0) > r − ε and p ∈ V0 ⊂ U . Since V0 ⊂ V0 and τ(V0) > r − ε,
Ne(V0) > r − ε for each e ∈ V0. So

∧
e∈V0

Ne(V0) ≥ r − ε.
On the other hand, in particular, Np(V0) > r − ε. Thus∨

{Np(V ) ∧ (
∧
e∈V

Ne(V )) : V ∈ 2X and V ⊂ U}

≥ Np(V0) ∧ (
∧
e∈V0

Ne(V0))

≥ r − ε.

Since ε > 0 is arbitrary,

Np(U) = r

≤
∨
{Np(V ) ∧ (

∧
e∈V

Ne(V )) : V ∈ 2X and V ⊂ U}.

This completes the proof.
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Proposition 3.8. Let a mappingNp : 2X → I satisfy the conditions
(OSN1) ∼ (OSN5), where p ∈ X. We define the mapping τ : 2X → I as
follows: For each U ∈ 2X ,

τ(U) =

{
1, if U = ∅,∧
e∈U Ne(U), otherwise.

Then τ ∈ OST(X). Moreover, the mapping Np is exactly the ordinary
smooth neighborhood system of p w.r.t. τ .

Proof. It is obvious that τ(∅) = 1. By (OSN2),
∨
{Np(U) : U ∈

2X} = 1. By (OSN4), Np(U) ≤ Np(X) for each U ∈ 2X . Thus∨
{Np(U) : U ∈ 2X} = Np(X) = 1, ∀p ∈ X.

So τ(U) =
∧
p∈X Np(X) = 1. Hence τ satisfies the condition (OST1).

Let U1, U2 ∈ 2X . If U1 ∩U2 = ∅, then it is obvious that τ(U1 ∩U2) =
1 ≥ τ(U1) ∧ τ(U2). Now suppose U1 ∩ U2 6= ∅. Then

τ(U1 ∩ U2) =
∧

e∈U1∩U2

Ne(U1 ∩ U2)

≥
∧

e∈U1∩U2

[Ne(U1) ∧Ne(U2)] [By (OSN1)]

= (
∧

e∈U1∩U2

Ne(U1)) ∧ (
∧

e∈U1∩U2

Ne(U2))

≥ (
∧
e∈U1

Ne(U1)) ∧ (
∧
e∈U2

Ne(U2))

= τ(U1) ∧ τ(U2).

Thus τ satisfies the condition (OST2). Let {Uα}α∈Γ ⊂ 2X . If ∪α∈ΓUα =
∅. Then it is obvious that

τ(∪α∈ΓUα) = 1 ≥
∧
α∈Γ

τ(Uα).

Now suppose ∪α∈PUα 6= ∅. Then

Np(∪α∈ΓUα) ≥ Np(Uα0) [By (OSN4)]

≥
∧

e∈Uα0

Ne(Uα0) = τ(Uα0).
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Thus

τ(∪α∈ΓUα) =
∧

p∈∪α∈Γ

UαNp(∪α∈ΓUα)

≥
∧
α∈Γ

τ(Uα).

So τ satisfies the condition (OST1). Hence τ ∈ OST(X).

Now we show that the mapping Np : 2X → I satisfying the conditions
(OSN1) ∼ (OSN5) is exactly the ordinary smooth neighborhood system
of p w.r.t. τ .

Let a mapping Mp : 2X → I be the ordinary smooth neighborhood
system of p w.r.t. τ . Then, by Theorem 3.5 and the condition (OSN1),

Mp(U) = 0 = Np(U) for eachU ∈ 2X with p /∈ U.

(3.3)

For each U ∈ 2X , let p ∈ U . Then

Mp(U) =
∨
{τ(V ) : V ∈ 2X and p ∈ V ⊂ U} [By Theorem 3.5]

=
∨
e∈V

Ne(V ) : V ∈ 2X and p ∈ V ⊂ U}. [By the definition of τ ].

It is clear that∧
e∈V

Ne(V ) ≤ Np(V ) for p ∈ V, where V ∈ 2X.

By the condition (OSN4)∧
e∈V

Ne(V ) ≤ Np(V ) ≤ Np(U) for p ∈ V ⊂ U, where U,V ∈ 2X.

Thus

Mp(U) =
∨
{τ(V ) : V ∈ 2X and p ∈ V ⊂ U}

=
∨
{
∧
e∈V

Ne(V ) : V ∈ 2X and p ∈ V ⊂ U}

≤ Np(U) for p ∈ U ∈ 2X.

(3.4)
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On the other hand,

Np(U) ≤
∨
{Np(V ) ∧ (

∧
e∈V

Ne(V )) : V ∈ 2X and V ⊂ U} [By (OSN5)]

= [
∨
{Np(V ) ∧ (

∧
e∈V

Ne(V )) : V ∈ 2X and p ∈ V ⊂ U}]

∨ [
∨
{Np(V ) ∧ (

∧
e∈V

Ne(V )) : V ∈ 2X and p /∈ V ⊂ U}]

=
∨
{Np(V ) ∧ (

∧
e∈V

Ne(V )) : V ∈ 2X and p ∈ V ⊂ U}

[Since Np(V) = 0 for p /∈ V]

≤
∨
{
∧
e∈V

Ne(V ) : V ∈ 2X and p ∈ V ⊂ U}

= Mp(U) for p ∈ U ∈ 2X.

So Np(U) ≤Mp(U) for p ∈ U ∈ 2X . (3.5)
Hence, by (3.3), (3.4) and (3.5), Mp = Np. This completes the proof.
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