VAGUE q-IDEALS IN $B C I$-ALGEBRAS

Yun Sun Hwang and Sun Shin Ahn*

Abstract

The notion of vague q-ideals of BCI-algebras is introduced, and several properties of them are investigated. Relations between a vague ideal and a vague q-ideal are discussed. Characterizations of a vague q-ideal are considered.

1. Introduction

Several authors from time to time have made a number of generalizations of Zadeh's fuzzy set theory [12]. Of these, the notion of vague set theory introduced by Gau and Buehrer [3] is of interest to us. Using the vague set in the sense of Gau and Buehrer, Biswas [2] studied vague groups. Jun and Park $[6,10]$ studied vague ideals and vague deductive systems in subtraction algebras. In [8], the concept of vague BCK/BCI-algebras is discussed. S. S. Ahn, Y. U. Cho and C. H. Park [1] studied vague quick ideals of $B C K / B C I$-algebras. Y. B. Jun and K. J. Lee ([7]) introduced the notion of positive implicative vague ideals in BCK-algebras. They established relations between a vague ideal and a positive implicative ideals.

In this paper, we also use the notion of vague set in the sense of Gau and Buehrer to discuss the vague theory in BCI-algebras. We introduce the notion of vague q-ideal of BCI-algebras and investigate several properties of them. We study a relation between a vague ideal and a vague q-ideal. We establish characterizations of a vague q-ideal.

2. Preliminaries

We review some definitions and properties that will be useful in our results.

[^0]By a BCI-algebra we mean an algebra $(X, *, 0)$ of type $(2,0)$ satisfying the following conditions:
(a1) $(\forall x, y, z \in X)(((x * y) *(x * z)) *(z * y)=0)$,
(a2) $(\forall x, y \in X)((x *(x * y)) * y=0)$,
(a3) $(\forall x \in X)(x * x=0)$,
(a4) $(\forall x, y \in X)(x * y=0, y * x=0 \Rightarrow x=y)$.
In any $B C I$-algebra X one can define a partial order " \leq " by putting $x \leq y$ if and only if $x * y=0$.

A $B C I$-algebra X has the following properties:
(b1) $(\forall x \in X)(x * 0=x)$.
(b2) $(\forall x, y, z \in X)((x * y) * z=(x * z) * y)$.
(b3) $(\forall x, y \in X)(0 *(x * y)=(0 * x) *(0 * y))$.
(b4) $(\forall x, y \in X)(x *(x *(x * y))=x * y)$.
(b5) $(\forall x, y, z \in X)(x \leq y \Rightarrow x * z \leq y * z, z * y \leq z * x)$.
(b6) $(\forall x, y, z \in X)((x * z) *(y * z) \leq x * y)$.
A non-empty subset S of a $B C I$-algebra X is called a subalgebra of X if $x * y \in S$ whenever $x, y \in S$. A non-empty subset A of a $B C I$-algebra X is called an ideal of X if it satisfies:
(c1) $0 \in A$,
(c2) $(\forall x \in A)(\forall y \in X)(y * x \in A \Rightarrow y \in A)$.
Note that every ideal A of a $B C I$-algebra X satisfies:

$$
(\forall x \in A)(\forall y \in X)(y \leq x \Rightarrow y \in A)
$$

A non-empty subset A of a $B C I$-algebra X is called a q-ideal of X if it satisfies (c1) and
(c3) $(\forall x, y, z \in A)(x *(y * z) \in A, y \in A \Rightarrow x * z \in A)$.
Note that any q-ideal is an ideal, but the converse is not true in general.
We refer the reader to the book [4] for further information regarding $B C I$-algebras.

Definition 2.1.([2]) A vague set A in the universe of discourse U is characterized by two membership functions given by:

1. A true membership function

$$
t_{A}: U \rightarrow[0,1]
$$

and
2. A false membership function

$$
f_{A}: U \rightarrow[0,1]
$$

where $t_{A}(u)$ is a lower bound on the grade of membership of u derived from the "evidence for u ", $f_{A}(u)$ is a lower bound on the negation of u derived from the "evidence against u ", and

$$
t_{A}(u)+f_{A}(u) \leq 1
$$

Thus the grade of membership of u in the vague set A is bounded by a subinterval $\left[t_{A}(u), 1-f_{A}(u)\right]$ of $[0,1]$. This indicates that if the actual grade of membership of u is $\mu(u)$, then

$$
t_{A}(u) \leq \mu(u) \leq 1-f_{A}(u)
$$

The vague set A is written as

$$
A=\left\{\left\langle u,\left[t_{A}(u), f_{A}(u)\right]\right\rangle \mid u \in U\right\}
$$

where the interval $\left[t_{A}(u), 1-f_{A}(u)\right]$ is called the vague value of u in A, denoted by $V_{A}(u)$.

For $\alpha, \beta \in[0,1]$ we now define (α, β)-cut and α-cut of a vague set. Recall that if $I_{1}=\left[a_{1}, b_{1}\right]$ and $I_{2}=\left[a_{2}, b_{2}\right]$ are two subintervals of $[0,1]$, we can define a relation by $I_{1} \succeq I_{2}$ if and only if $a_{1} \geq a_{2}$ and $b_{1} \geq b_{2}$.

Definition 2.2.([2]) Let A be a vague set of a universe X with the true-membership function t_{A} and the false-membership function f_{A}. The (α, β)-cut of the vague set A is a crisp subset $A_{(\alpha, \beta)}$ of the set X given by

$$
A_{(\alpha, \beta)}=\left\{x \in X \mid V_{A}(x) \succeq[\alpha, \beta]\right\}
$$

Clearly $A_{(0,0)}=X$. The (α, β)-cuts of the vague set A are also called vague-cuts of A.

Definition 2.3.([2]) The α-cut of the vague set A is a crisp subset A_{α} of the set X given by $A_{\alpha}=A_{(\alpha, \alpha)}$.

Note that $A_{0}=X$, and if $\alpha \geq \beta$ then $A_{\alpha} \subseteq A_{\beta}$ and $A_{(\alpha, \beta)}=A_{\alpha}$.
Equivalently, we can define the α-cut as

$$
A_{\alpha}=\left\{x \in X \mid t_{A}(x) \geq \alpha\right\}
$$

3. Vague q-ideals

For our discussion, we shall use the following notations on interval arithmetic:

Let $I[0,1]$ denote the family of all closed subintervals of $[0,1]$. We define the term "imax" to mean the maximum of two intervals as

$$
\operatorname{imax}\left(I_{1}, I_{2}\right):=\left[\max \left(a_{1}, a_{2}\right), \max \left(b_{1}, b_{2}\right)\right]
$$

where $I_{1}=\left[a_{1}, b_{1}\right], I_{2}=\left[a_{2}, b_{2}\right] \in I[0,1]$. Similarly we define "imin". The concepts of "imax" and "imin" could be extended to define "isup" and "iinf" of infinite number of elements of $I[0,1]$.

It is obvious that $L=\{I[0,1]$, isup, $\operatorname{iinf}, \succeq\}$ is a lattice with universal bounds $[0,0]$ and $[1,1]$ (see [2]).

In what follows let X be a $B C I$-algebra unless specified otherwise.
Definition 3.1.([8]) A vague set A of a $B C I$-algebra X is called a vague BCI-algebra of X if the following condition is true:
$(\mathrm{d} 0)(\forall x \in X)\left(V_{A}(x * y) \succeq \operatorname{imin}\left\{V_{A}(x), V_{A}(y)\right\}\right)$.
that is,

$$
\begin{aligned}
& t_{A}(x * y) \geq \min \left\{t_{A}(x), t_{A}(y)\right\}, \\
& 1-f_{A}(x * y) \geq \min \left\{1-f_{A}(x), 1-f_{A}(y)\right\}
\end{aligned}
$$

for all $x, y \in X$.
Definition 3.2.([8]) A vague set A of X is called a vague ideal of X if the following conditions are true:
(d1) $(\forall x \in X)\left(V_{A}(0) \succeq V_{A}(x)\right)$,
(d2) $(\forall x, y \in X)\left(V_{A}(x) \succeq \operatorname{imin}\left\{V_{A}(x * y), V_{A}(y)\right\}\right)$.
that is,

$$
\begin{aligned}
& \quad t_{A}(0) \geq t_{A}(x), 1-f_{A}(0) \geq 1-f_{A}(x) \\
& \text { and } t_{A}(x) \geq \min \left\{t_{A}(x * y), t_{A}(y)\right\} \\
& \quad 1-f_{A}(x) \geq \min \left\{1-f_{A}(x * y), 1-f_{A}(y)\right\}
\end{aligned}
$$

for all $x, y \in X$.
Proposition 3.3.([8]) Every vague ideal of a BCI-algebra X satisfies the following properties:
(i) $(\forall x, y \in X)\left(x \leq y \Rightarrow V_{A}(x) \succeq V_{A}(y)\right)$,
(ii) $(\forall x, y, z \in X)\left(V_{A}(x * z) \succeq \operatorname{imin}\left\{V_{A}((x * y) * z), V_{A}(y)\right\}\right)$.

Definition 3.4. A vague set A of X is called a vague q-ideal of X if it satisfies (d1) and
(d3) $(\forall x, y, z \in X)\left(V_{A}(x * z) \succeq \operatorname{imin}\left\{V_{A}(x *(y * z)), V_{A}(y)\right\}\right)$.
that is,

$$
\begin{aligned}
& t_{A}(x * z) \geq \min \left\{t_{A}(x *(y * z)), t_{A}(y)\right\}, \\
& 1-f_{A}(x * z) \geq \min \left\{1-f_{A}(x *(y * z)), 1-f_{A}(y)\right\}
\end{aligned}
$$

for all $x, y, z \in X$.
Example 3.5. Let $X:=\{0, a, b\}$ be a $B C I$-algebra([9]) in which the *-operation is given by the following table:

$*$	0	a	b
0	0	0	b
a	a	0	b
b	b	b	0

Let A be the vague set in X defined as follows:

$$
A=\{\langle 0,[0.8,0.1]\rangle,\langle a,[0.8,0.1]\rangle,\langle b,[0.5,0.3]\rangle\}
$$

It is routine to verify that A is a vague q-ideal of X.
Theorem 3.6. Every vague q-ideal of a $B C I$-algebra X is both a vague ideal of X and a vague $B C I$-algebra of X.

Proof. Let A be a vague q-ideal of X. Put $z:=0$ in (d3). Use (b1), we have (d2). Hence A is a vague ideal of X.
Putting $y:=z$ in (d3), for any $x, y, z \in X$ we have

$$
\begin{aligned}
V_{A}(x * z) & \succeq \operatorname{imin}\left\{V_{A}(x *(z * z)), V_{A}(z)\right\} \\
& =\operatorname{imin}\left\{V_{A}(x * 0), V_{A}(z)\right\} \\
& =\operatorname{imin}\left\{V_{A}(x), V_{A}(z)\right\} .
\end{aligned}
$$

It means that A is a vague $B C I$-algebra of X
The converse of Theorem 3.6 is not true in general as the following example.

Example 3.7. Let $X:=\{0, a, b, c\}$ be a $B C I$-algebra($[9])$ in which the $*$-operation is given by the following table:

$$
\begin{array}{c|cccc}
* & 0 & a & b & c \\
\hline 0 & 0 & c & b & a \\
a & a & 0 & c & b \\
b & b & a & 0 & c \\
c & c & b & a & 0
\end{array}
$$

Let A be the vague set in X defined as follows:

$$
A=\{\langle 0,[0.7,0.2]\rangle,\langle a,[0.5,0.4]\rangle,\langle b,[0.5,0.4]\rangle,\langle c,[0.5,0.4]\rangle\}
$$

It is routine to verify that A is both a vague ideal of X and a vague $B C I$-algebra of X. But it is not a vague q-ideal of X since $V_{A}(c * a)=$ $V_{A}(b) \nsucceq \operatorname{imin}\left\{V_{A}(c *(0 * a)), V_{A}(0)\right\}$.

Theorem 3.8. Let A be a vague ideal of a $B C I$-algebra. Then the following are equivalent:
(1) A is a vague q-ideal of X.
(2) $(\forall x, y \in X)\left(V_{A}(x * y) \succeq V_{A}(x *(0 * y))\right.$.
(3) $(\forall x, y, z \in X)\left(V_{A}((x * y) * z) \succeq V_{A}(x *(y * z))\right.$.

Proof. (1) \Rightarrow (2) Put $y=0$ and $z=y$ in (d3). Hence for any $x, y \in X$, we have

$$
\begin{aligned}
V_{A}(x * y) & \succeq \operatorname{imin}\left\{V_{A}(x *(0 * y)), V_{A}(0)\right\} \\
& =V_{A}(x *(0 * y)) .
\end{aligned}
$$

(2) \Rightarrow (3) Since for any $x, y, z \in X$

$$
\begin{aligned}
((x * y) *(0 * z)) *(x *(y * z)) & =((x * y) *(x *(y * z))) *(0 * z) \\
& \leq((y * z) * y) *(0 * z) \\
& =(0 * z) *(0 * z)=0,
\end{aligned}
$$

we have $((x * y) *(0 * z)) *(x *(y * z))=0$, it follows from Proposition 3.3 (i) that $V_{A}(x *(y * z)) \preceq V_{A}((x * y) *(0 * z)) \preceq V_{A}((x * y) * z)$. Thus (3) holds.
$(3) \Rightarrow$ (1) Using Proposition 3.3(ii) and (3), we have

$$
\begin{aligned}
V_{A}(x * z) & \succeq \operatorname{imin}\left\{V_{A}((x * y) * z), V_{A}(y)\right\} \\
& \succeq \operatorname{imin}\left\{V_{A}(x *(y * z)), V_{A}(y)\right\},
\end{aligned}
$$

for all $x, y, z \in X$. Thus (d3) holds. Thus A is a vague q-ideal of X.
Theorem 3.9. Let A be a vague ideal of a BCI-algebra X such that

$$
(\forall x, y \in X)\left(V_{A}(x * y) \succeq V_{A}(x)\right) .
$$

Then it is a vague q-ideal of X.
Proof. Using (d2) and assumption, we have

$$
\begin{aligned}
V_{A}(x * z) & \succeq \operatorname{imin}\left\{V_{A}((x * z) *(y * z)), V_{A}(y * z)\right\} \\
& =\operatorname{imin}\left\{V_{A}((x *(y * z)) * z), V_{A}(y * z)\right\} \\
& \succeq \operatorname{imin}\left\{V_{A}(x *(y * z)), V_{A}(y * z)\right\} \\
& \succeq \operatorname{imin}\left\{V_{A}(x *(y * z)), V_{A}(y)\right\}
\end{aligned}
$$

for all $x, y, z \in X$. Hence (d3) holds. Thus A is a vague q-ideal of X.

The converse of Theorem 3.9 is not true in general as seen the following example.

Example 3.10. Consider a $B C I$-algebra $X:=\{0, a, b\}$ and a vague set A as in Example 3.5. Then A is a vague q-ideal of X, but it does not satisfy $V_{A}(x * y) \succeq V_{A}(x)$ since $V_{A}(0 * b)=V_{A}(b) \nsucceq V_{A}(0)$.

Definition 3.11 A $B C I$-algebra X is said to be associative ([4]) if $(x * y) * z=x *(y * z)$ for any $x, y, z \in X$. A $B C I$-algebra X is said to be quasi-associative $([11])$ if $(x * y) * z \leq x *(y * z)$ for any $x, y, z \in X$.

Every associative $B C I$-algebra X is quasi-associative, but the converse is not true in general (see [11]).

Proposition 3.12. Let X be a quasi-associative $B C I$-algebra. Every vague ideal of X is a vague q-ideal of X.

Proof. Let A be a vague ideal of X. Since X is a quasi-associative $B C I$-algebra, we have $(x * y) * z \leq x *(y * z)$ for any $x, y, z \in X$. It follows from Proposition 3.3(i) that $V_{A}((x * y) * z) \succeq V_{A}(x *(y * z))$. By Theorem 3.8, A is a vague q-ideal of X.

Proposition 3.12 is not true in general if X is not a quasi-associative $B C I$-algebra as seen in the following example.

Example 3.13. Consider a $B C I$-algebra $X=\{0, a, b, c\}$ and a vague set A of X as in Example 3.7. Since $(a * b) * c \not \leq a *(b * c), X$ is not a quasi-associative $B C I$-algebra. Then A is a vague ideal of X but not a vague q-ideal of X.

Corollary 3.14. Let X be an associative $B C I$-algebra. Every vague ideal of X is a vague q-ideal of X.

Proof. Straightforward.
Theorem 3.15. Let A be a vague q-ideal of a $B C I$-algebra X. Then for any $\alpha, \beta \in[0,1]$, the vague-cut $A_{(\alpha, \beta)}$ of A is a crisp q-ideal of X.

Proof. Obviously, $0 \in A_{(\alpha, \beta)}$. Let $x *(y * z) \in A_{(\alpha, \beta)}$ and $y \in A_{(\alpha, \beta)}$. Then $V_{A}(x *(y * z)) \succeq[\alpha, \beta]$ and $V_{A}(y) \succeq[\alpha, \beta]$, i.e., $t_{A}(x *(y * z)) \geq$ $\alpha, t_{A}(y) \geq \alpha$ and $1-f_{A}(x *(y * z)) \geq \beta, 1-f_{A}(y) \geq \beta$. It follows that

$$
t_{A}(x * z) \geq \min \left\{t_{A}(x *(y * z)), t_{A}(y)\right\} \geq \alpha
$$

and

$$
1-f_{A}(x * z) \geq \min \left\{1-f_{A}(x *(y * z)), 1-f_{A}(y)\right\} \geq \beta
$$

Hence $x * z \in A_{(\alpha, \beta)}$ and so $A_{(\alpha, \beta)}$ is a crisp q-ideal of X.
The ideals like $A_{(\alpha, \beta)}$ are also called vague cut q-ideals of X.

Theorem 3.16. Any q-ideal I of a $B C I$-algebra X is a vague-cut ideal of some vague q-ideal of X.

Proof. Proof. Consider the vague set A of X given by

$$
V_{A}(x)= \begin{cases}{[\alpha, \alpha]} & \text { if } x \in I \\ {[0,0]} & \text { if } x \notin I\end{cases}
$$

where $\alpha \in(0,1)$. Since $0 \in I$, we have $V_{A}(0)=[\alpha, \alpha] \succeq V_{A}(x)$ for all $x \in X$. Let $x, y, z \in X$ be such that $x *(y * z) \in I$ and $y \in I$. If $x * z \notin I$, then

$$
\begin{aligned}
t_{A}(x * z) & =0 \leq \min \left\{t_{A}(x *(y * z)), t_{A}(y)\right\} \\
\text { and } 1-f_{A}(x * z) & =0 \leq \min \left\{1-f_{A}(x *(y * z)), 1-f_{A}(y)\right\} .
\end{aligned}
$$

If $x * z \in I$, then

$$
t_{A}(x * z)=\alpha=\min \left\{t_{A}(x *(y * z)), t_{A}(y)\right\}
$$

$$
\text { and } 1-f_{A}(x * z)=\alpha=\min \left\{1-f_{A}(x *(y * z)), 1-f_{A}(y)\right\}
$$

Thus A is a vague q-ideal of X. Clearly, $I=A_{(\alpha, \alpha)}$.
Theorem 3.17. Let A be a vague q-ideal of a $B C I$-algebra X. Then the set

$$
I:=\left\{x \in X \mid V_{A}(x)=V_{A}(0)\right\}
$$

is a crisp q-ideal of X.
Proof. Clearly, $0 \in I$. Let $x, y, z \in X$ be such that $x *(y * z) \in I$ and $y \in I$. Then $V_{A}(x *(y * z))=V_{A}(0)$ and $V_{A}(y)=V_{A}(0)$ and so

$$
V_{A}(x * z) \succeq \operatorname{imin}\left\{V_{A}(x *(y * z)), V_{A}(y)\right\}=V_{A}(0)
$$

Since $V_{A}(0) \succeq V_{A}(x)$ for all $x \in X$, it follows that $V_{A}(x * z)=V_{A}(0)$. Hence $x * z \in I$. Therefore I is a crisp q-ideal of X.

4. Acknowledgements

The authors wish to thank the referees for their valuable suggestions.

References

[1] S. S. Ahn, Y. U. Cho and C. H. Park, Vague quick ideals of BCK/BCI-algebras, Honam Math. J., 30(2008), 65-74.
[2] R. Biswas, Vague groups, Internat. J. Comput. Cognition, 4 (2006), no. 2, 20-23.
[3] W. L. Gau and D. J. Buehrer, Vague sets, IEEE Transactions on Systems, Man and Cybernetics, 23 (1993), 610-614.
[4] Q. P. Hu and K. Iséki, On BCI-algebra satisfying $(x * y) * z=x *(y * z)$, Math. Seminar Notes Kobe Univ., 8 (1980), 553-555.
[5] Y. Huang, BCI-algebras, Science Press, Beijing, 2006.
[6] Y. B. Jun and C. H. Park, Vague ideals of subtraction algebras, Int. Math. Forum, 2(2007), no.59, 2919-2926.
[7] Y. B. Jun and K. J. Lee, Positive implicative vague ideal in BCK-algebras, Annals of Fuzzy Mathematics and Informatics,1(2011), 1-9.
[8] K. J. Lee, K. S. So and K. S. Bang, Vague BCK/BCI-algebras, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 15(2008), 297-308.
[9] Y. L. Liu, J. Meng, X. H. Zhang and Z. C. Yue, q-ideals and a-ideals in BCIalgebras, Southeast Asian Bull. Math., 24(2000), 243-253.
[10] C. H. Park, Vague deductive systems of subtraction algebras, J. Appl. Math. Comput., 26(2008), 427-436.
[11] C. C. Xi, On a class of BCI-algebras, Math. Jpn, 35(1990), 13-17
[12] L. A. Zadeh, Fuzzy sets, Inform. Control, 8(1965), 338-353.

Yun Sun Hwang
Department of Mathematics Education, Dongguk University, Seoul 100-715, Korea.
E-mail: hwangyunsun@nate.com

Sun Shin Ahn
Department of Mathematics Education, Dongguk University, Seoul 100-715, Korea.
E-mail: sunshine@dongguk.edu

[^0]: Received August 27, 2012. Accepted October 10, 2012.
 2010 Mathematics Subject Classification. 06F35, 03G25.
 Key words and phrases. vague ideal, vague q-ideal.
 *Corresponding author.

