ON SUBMODULE TRANSFORMS T(N) AND S(N)

Yong Hwan Cho

Abstract

In this paper, we give some properties on submodule transforms.

0. Introduction

Let M be a module over commutative ring R with identity, S the set of nonzero divisors of R and R_{S} the total quotient ring of R. For a nonzero ideal I of R, let $I^{-1}=\left\{x \in R_{S} \mid x I \subseteq R\right\}$. I is said to be an invertible ideal of R if $I I^{-1}=R$. Put $T=\{t \in S \mid t m=0$ for some $m \in$ M implies $m=0\}$. Then T is a multiplicatively closed subset of S and if M is torsion free, then $T=S([9$, Proposition 1.1]). In particular, if M is a faithful multiplication module then M is torsion free ([4,Lemma 4.1]) and so $T=S$. So in this case, $R_{T}=R_{S}$. Let N be a submodule of M. If $x=\frac{r}{t} \in R_{T}$ and $n \in N$, then we say that $x n \in M$ if there exists $m \in M$ such that $t m=r n$. Then this is a well defined operation([9,p399]). For a submodule N of $M, N^{-1}=\left\{x \in R_{T} \mid x N \subseteq M\right\}=\left[M:_{R_{T}} N\right]$. We say that N is invertible in M if $N N^{-1}=M$ and M is called a Dedekind (resp. Prüfer) module providing that every nonzero (resp. every nonzero finitely generated) submodule of M is invertible.
M is called a multiplication module if every submodule N of M has the form $I M$ for some ideal I of R. An $R-$ module M is said to be faithful if Ann (M) $=\left[0:_{R} M\right]=0$.

Let R be an integral domain with quotient field $Q(R)$ and let I be an ideal of R. R.Gilmer and J.Huckaba ([7]) introduced the concept of ideal transform $T(I)$ of $I ; T(I)=\cup_{n \geq 1}\left[R:_{Q(R)} I^{n}\right]$ and studied the problem of determining for which integral domain has the equality $T(I J)=T(I)+T(J)$ for all ideals, or all finitely generated ideals, or all

[^0]principal ideals I and J of R. Here $T(I)+T(J)=\{\alpha+\beta \mid \alpha \in T(I), \beta \in$ $T(J)\}$, so that $T(I)+T(J)$ is not always a ring.
$\operatorname{Ali}([1])$ generalized ideal transforms to submodules of modules over an integral domains as follows ; Let R be an integral domain and M a module over R. For a submodule N of $M, T(N)=\cup_{n \geq 0}\left[M: R_{T}[N\right.$: $\left.M]^{n} N\right]$ where $[N: M]^{0}=R$.

Consider the following conditions on M.
$\left(T_{1}\right) T([K: M] N)=T(K)+T(N)$ for all submodules K and N of M.
$\left(T_{2}\right) T([K: M] N)=T(K)+T(N)$ for all finitely generated submodules K and N of M.

We will say that M satisfies $T_{1}-\operatorname{Property}\left(\right.$ resp. $\left.T_{2}-\operatorname{Property}\right)$ if $T([K: M] N)=T(K)+T(N)$ for all submodules (resp. all finitely generated submodules) K and N of M.

An R - module M is called cancellation if for all ideals I and J of R, $I M=J M$ implies that $I=J$. In section 2 of this paper, we find new properties of submodule transforms of a faithful multiplication module over a domain (Theorem 2.4,Theorem 2.6 and Theorem 2.7).

In section 3, we define S-transform of submodules, $\mathrm{S}(\mathrm{N})$, for a submodule N of M and give some sufficient conditions for $\mathrm{S}(\mathrm{N})$ to be $\mathrm{T}(\mathrm{N})($ Theorem 3.3 ,Theorem 3.4 and Theorem 3.5).

1. Ideal Transforms and Submodule transforms

In this section we give some properties to use in next sections.
Proposition 1.1. Let I be an ideal of an integral domain R. Then $T(I)=T\left(I^{n}\right)$ for every positive integer n.

Proof. Let $Q(R)$ be a quotient field of R and let $x \in T(I)$. Then $x \in Q(R)$ and $x I^{r} \subseteq R$ for some positive integer r. For any positive integer $n, I^{n} \subseteq I$ and hence $x\left(I^{n}\right)^{r} \subseteq x I^{r} \subseteq R$. So $x \in T\left(I^{n}\right)$. For the other inclusion, let $x \in T\left(I^{n}\right)$. Then $x \in Q(R)$ and $x\left(I^{n}\right)^{s}=x I^{n s} \subseteq R$ for some positive integer s. So $x \in T(I)$.

Faithful multiplication module M over an integral domain R is torsion free ([4,Lemma 4.1]) and hence $T=S([9$, Proposition 1.1-(3)]). In this case $R_{T}=R_{S}=Q(R)$.

Proposition 1.2. Let R be an integral domain, M a faithful multiplication module over R and N a submodule of M. Then $T(N)=$ $T([N: M])$.

Proof. $T(N)=\cup_{n \geq 0}\left[M:_{Q(R)}[N: M]^{n} N\right]=\cup_{n \geq 0}\left[M: Q_{Q(R)}[N:\right.$ $\left.M]^{n+1} M\right]=\cup_{n \geq 0}\left[R:_{Q(R)}[N: M]^{n+1}\right]=T([N: M])([1, \mathrm{p} 26])$

Proposition 1.3. Let R be an integral domain and M a faithful multiplication R - module, then $[I N: M]=I[N: M]$ for all ideal I of R and any submodule N of M.

Proof. Any faithful multiplication module M over an integral domain R is finitely generated ([6,Theorem 3.1]) and finitely generated faithful multiplication module is cancellation([10, Corollary to Theorem 9]). Since $I N=[I N: M] M, I N=I[N: M] M$ and M is cancellation, $[I N: M]=I[N: M]$.

Proposition 1.4. Let R be an integral domain , I an ideal of R and M a faithful multiplication R-module. Then $T(I M)=T\left(I^{n} M\right)$ for every positive integer n.

Proof. $T(I M)=T([I M: M])=T(I[M: M])=T(I R)=T(I)=$ $T\left(I^{n}\right)=T\left(I^{n}[M: M]\right)=T\left(\left[I^{n} M: M\right]\right)=T\left(I^{n} M\right)$.

2. Transforms $\mathbf{T}(\mathbf{N})$ of Submodules

In this section we consider some properties of submodule transforms of a faithful multiplication module over a domain.

Proposition 2.1. Let R be an integral domain, M a faithful multiplication R-module and let N, K be submodules of M with $[N: M] N \subseteq$ $K \subseteq N$. Then $T(K)=T(N)$.

Proof. By $[1$, Theorem $1-(1)], T(N) \subseteq T(K) . T([N: M] N)=T([N:$ $M] N: M)=T\left([N: M]^{2}\right)=T([N: M])=T(N)([$ Proposition 1.1, 1.2 and 1.3]). Since $[N: M] N \subseteq K, T(K) \subseteq T([N: M] N)=T(N)$.

Compare the following Proposition with [7, Corollary 3].
Proposition 2.2. Let R be an integral domain, M a faithful multiplication R-module and let N, K be submodules of M with $T(N) \subseteq$ $T(K)$.If K is finitely generated, then $T([K: M] N)=T(K)=T(K)+$ $T(N)$.

Proof. Since $T(N) \subseteq T(K), T([N: M]) \subseteq T([K: M])([$ Proposition 1.2]). We know that M is finitely generated ([6,Theorem 3.1]). Since K is finitely generated $[K: M]$ is also finitely generated ([3,Proposition $2.2-(2)]), T([K: M][N: M])=T([K: M])=T([K: M])+T([N:$ $M])([7$, Corollary 3] $)$. However, we know that $T([K: M][N: M])=$
$T([K: M] N), T(K)=T([K: M])$ and $T(N)=T([N: M])$. Hence $T([K: M] N)=T(K)=T(K)+T(N)$.

Compare the following Proposition with [7,Proposition 1-(f)].
Proposition 2.3. Let R be an integral domain, M a faithful multiplication R-module and let N be a submodule of M. If $T(N)=R$ or $T(N)=Q(R)$ then $T([K: M] N)=T(K)+T(N)$.

Proof. Suppose that $T(N)=R$. If $x \in T([K: M] N)$, then for some nonnegative integer $n, x[[K: M] N: M]^{n}[K: M] N \subseteq M$. Since $[[K: M] N: M]=[K: M][N: M]$ (Proposition 1.4), we have that $x[K: M]^{n+1}[N: M]^{n} N \subseteq M$ and hence $x[K: M]^{n+1} \subseteq[M:[N:$ $\left.M]^{n} N\right] \subseteq T(N)=R$. Therefore $x \in\left[R:[K: M]^{n+1}\right] \subseteq T([K:$ $M])=T(K)([$ Proposition 1.2] $)$. Since $R \subseteq T(K), T(N) \subseteq T(K)$ and so $T([K: M] N) \subseteq T(K)=T(K)+T(N)$. The other inclusion comes from [1, Theorem 1-(2)].

Now if $T(N)=Q(R)$ then $Q(R)=T(N)+T(K) \subseteq T([K: M] N)$ $([1$, Theorem 1-(2)]) and since $T([K: M] N) \subseteq Q(R), T([K: M] N)=$ $Q(R)=T(K)+T(N)$.

Theorem 2.4. Let R be an integral domain, M a faithful multiplication R-module and Λ the set of all submodule transforms of M. If M satisfies T_{1} - property, then $(\Lambda,+, \cup)$ is a distributive lattice.

Proof. Let $T(K), T(N) \in \Lambda$. Since M satisfies T_{1}-property, $T([K$: $M] N)=T(K)+T(N)$. By [1, Theorem 1-(4)] we have $T(N) \cap T(K)=$ $T(N+K)$. Hence Λ is closed under both " + " and " \cap ". It is then easy to show that Λ is a lattice. Now, to show that Λ is distributive, it is sufficient to prove that either of the distributive laws hold. We will prove that $(T(N)+T(K)) \cap T(L)=T(N) \cap T(L)+T(K) \cap T(L)$ for all $T(K), T(N), T(L) \in \Lambda$.

It is obvious that $T(N) \cap T(L)+T(K) \cap T(L) \subseteq(T(N)+T(K)) \cap T(L)$.
Note that $(T(N)+T(K)) \cap T(L)=T([K: M] N) \cap T(L)=T([K:$ $M] N+L)$ and $[T(N) \cap T(L)]+[T(K) \cap T(L)]=T(N+L)+T(K+L)=$ $T([(K+L): M](N+L))$.

Therefore we prove $T([K: M] N+L) \subseteq T([(K+L): M](N+L))$ for the other inclusion. However,

$$
\begin{aligned}
& {[(K+L): M](N+L)=[(K+L): M] N+[(K+L): M] L} \\
& =[(K+L): M][N: M] M+[(K+L): M] L \\
& =[N: M][(K+L): M] M+[(K+L): M] L \\
& =[N: M](K+L)+[(K+L): M] L \\
& =[N: M] K+[N: M] L+[(K+L): M] L .
\end{aligned}
$$

Since M is a multiplication module, $[N: M] K=[N: M][K$: $M] M=[K: M][N: M] M=[K: M] N$. Hence, $[N: M] K+[N:$ $M] L+[(K+L): M] L$
$\subseteq[N: M] K+L=[K: M] N+L$.
Again by $[1$, Theorem 1-(1)], $T([K: M] N+L) \subseteq T([(K+L): M](N+$ $L)$) and we complete our proof.

We give a partial answer for the converse of above Theorem.
Corollary 2.5. Let R be a Noetherian domain, M a faithful multiplication R-module and Λ the set of all submodule transforms of M.If $(\Lambda,+, \cap)$ is a distributive lattice, then M satisfies T_{1} - property.

Proof. Let $\bar{\Lambda}$ be the set of all finitely generated submodule transforms of M. Since M is Noetherian ([5,Proposition 2.10]) $\Lambda=\bar{\Lambda}$.

Hence we know that M satisfies T_{1}-property if and only if M satisfies T_{2}-property. If $(\Lambda,+, \cap)$ is a distributive lattice then $(\bar{\Lambda},+, \cap)$ is a distributive lattice. So M satisfies T_{2}-property ([1,Corollary 9]) and hence M satisfies T_{1}-property.

Theorem 2.6. Let R be a Noetherian domain, M a faithful multiplication R-module and Λ the set of all submodule transforms of M. Then the following statements are equivalent.
(1) M satisfies T_{1}-property.
$(2)(\Lambda,+, \cap)$ is a distributive lattice.
$(3)(\Lambda,+, \cap)$ is a lattice.
Proof. (1) \Rightarrow (2) It follows from Theorem 2.4.
$(2) \Rightarrow(3)$ It is clear.
$(3) \Rightarrow(1)$ It follows from [1, Corollary 9$]$ and $\Lambda=\bar{\Lambda}([5$, Proposition 2.10]).

Theorem 2.7. T_{1}-property holds in a faithful multiplication Dedekind module M over an integral domain R.

Proof. As M is Noetherian ([2,Theorem 2.4]), M satisfies T_{1}-property if and only if M satisfies T_{2}-property. Furthermore M is $\operatorname{Prüfer}([2$, Theorem $2.4])$. The result comes from ([1,Proposition 4]).

Proposition 2.8. Let R be an integral domain, M a faithful multiplication R-module and Γ be the lattice of all submodules of M, Λ the set of all submodule transforms of M. If M satisfies T_{1}-property, then the $\operatorname{map} \phi:(\Gamma,+, \cap) \rightarrow(\Lambda,+, \cap)$ defined by $\phi(N)=T(N)$ is an order
reversing lattice homomorphism which interchanges the operations "+" and " \cap ".

Proof. For any $N, K \in \Gamma$ with $N \subseteq K, T(K) \subseteq T(N)$ and hence $\phi(N)=T(N) \supseteq \phi(K)=T(K)$.
$\phi(N+K)=T(N+K)=T(N) \cap T(K)([1$, Theorem 1-(4)]).
$\phi(N \cap K)=T(N \cap K)=T([K: M] N)=T(K)+T(N)(1,[$ Theorem 1-(3)]).

3. Transforms $S(N)$ of submodules

Hays([8]) defined S-transform, $S(I)$, of an ideal I of an integral domain R with quotient field $Q(R) ; S(I)$ is the set of elements $x \in Q(R)$ such that for each $a \in I, x a^{n_{a}} \in R$ for some positive integer n_{a}. Author gave some relations between $T(I)$ and $S(I)$. Now we generalize S transform for ideals of a ring R to submodules of faithful multiplication modules over an integral domains.

Let R be an integral domain and M a faithful multiplication module over R.

We define S-transform $S(N)$ for a submodule N of M to be the set of elements $x \in Q(R)$ such that for each $a \in[N: M]$ and for some positive integer $n_{a}, x a^{n_{a}} N \subseteq M$.

In this section we prove some properties about $S(N)$ and we give some sufficient conditions for $S(N)$ to be $T(N)$.

Proposition 3.1. Let R be an integral domain and M a faithful multiplication module over R. For any submodule N of $M, T(N) \subseteq$ $S(N)$.

Proof. It is obvious.
Proposition 3.2. Let R be an integral domain and M a faithful multiplication module over R. For submodules N, K of M, if $N \subseteq K$ then $S(K) \subseteq S(N)$.

Proof. Let a be any element in $[N: M]$ and let $x \in S(K)$. Then $a \in$ [$K: M$] and there exists some positive integer n_{a} such that $x a^{n_{a}} K \subseteq M$. Hence $x a^{n_{a}} N \subseteq x a^{n_{a}} K \subseteq M$ and $x \in S(N)$.

Compare the following Theorem with [8, Theorem 1.3].
Theorem 3.3. Let R be an integral domain and M a faithful multiplication module over R. If N is a finitely generated submodule of M then $T(N)=S(N)$.

Proof. It is sufficient to show that $S(N) \subseteq T(N)$. Let $x \in S(N)$. Since N is a finitely generated submodule of $M,[\mathrm{~N}: \mathrm{M}]$ is also a finitely generated ideal of $R([3$, Proposition $2.2-(2)])$. Now put $[N: M]=$ $\left(a_{1}, \cdots, a_{r}\right)$ for some $a_{i} \in R$. Since $x \in S(N)$, there exist positive integers n_{i} such that $x a_{i}^{n_{i}} N \subseteq M$ for $1 \leq i \leq r$. Let $n=\sum_{i=1}^{r} n_{i}$. Then $[N: M]^{n}$ is generated by elements of the form $a_{1}^{m_{1}} \cdots a_{r}^{m_{r}}$ with $\sum_{i=1}^{r} m_{i}=n$. Thus $m_{i} \geq n_{i}$ for some $i(1 \leq i \leq r)$. Hence $x[N:$ $M]^{n} N \subseteq M$ and $x \in T(N)$.

Compare the following Propositions with [8, Lemma 1.11 and Lemma 1.12].

Theorem 3.4. Let R be an integral domain and M a faithful multiplication module over R. If one of the following conditions hold, then $T(N)=S(N)$.
(1) there exists finitely generated submodule $K \subseteq N$ such that $T(K)=$ $T(N)$.
(2) there exists finitely generated submodule $K \subseteq N$ such that [N : $M] N \subseteq K \subseteq N$.

Proof. First, we assume that condition (1) holds. We show that $S(N) \subseteq T(N)$ because of $T(N) \subseteq S(N)([$ Proposition 3.1]).
$S(N) \subseteq S(K)([$ Proposition 3.2]) and $S(K)=T(K)$ ([Theorem 3.3]). Therefore $S(N) \subseteq T(K)=T(N)$.

Now we assume that condition (2) holds. $T([N: M] N)=T([N$: $M] N: M)=T([N: M][N: M])=T([N: M])=T(N)$. Since $[N:$ $M] N \subseteq K, T(K) \subseteq T([N: M] N)=T(N) \subseteq T(K)$. Вy $(1), T(N)=$ $S(N)$.

An R - module M is called valuation module if for all $m, n \in M$, $R m \subseteq R n$ or $R n \subseteq R m$. Equivalently, for all submodules N, K of M, either $N \subseteq K$ or $K \subseteq N$. ([2])

Theorem 3.5. Let R be an integral domain and M a faithful multiplication valuation module over R. If $N \neq[N: M] N$ then $T(N)=$ $S(N)$.

Proof. Let $n \in N-[N: M] N$. Then $R n \nsubseteq(N: M) N$. Since M is a valuation module, $(N: M) N \subseteq R n(\subseteq N)$. Hence $T(N) \subseteq T(R n) \subseteq$ $T([N: M] N)$ and $T([N: M] N)=T([N: M][N: M] M)=T([N:$ $\left.M]^{2} M\right)=T([N: M] M)([$ Proposition 1.3] $)=T(N)$. Thus $T(N)=$ $T(R n)$.

Hence we obtain our result from Theorem 3.4-(1).

References

[1] M.M.Ali, The Transform Formula For Submodules of Multiplication Modules, New Zealand J.of Math. 41 (2011), 25-37.
[2] M.M.Ali, Invertibility of Multiplication Modules, New Zealand J. of Math. 35 (2006) 17-29.
[3] M.M.Ali and D.J.Smith, Some Remarks on Multiplication and Projective Modules, Comm.in Algebra, 32(10) (2004) 3897-3909.
[4] Z.E.Bast and P.F.Smith, Multiplication Modules, Comm.in Algebra. 16(4) (1988) 755-779.
[5] Y.H.Cho, Finitely Generated Multiplication Modules, Bull. of Honam. Math. J, 14 (1997) 49-52.
[6] Y.H.Cho, On Multiplication Modules(V), Honam. Math. J., 30(2) (2008) 363368.
[7] R.Gilmer and J.A.Huckaba, The Transform Formula for Ideals, J. of Algebra, 21 (1972) 191-215.
[8] J.H.Hays, The S-Transform and the Ideal Transform, J. of Algebra, 57 (1979) 223-229.
[9] A.G.Naum and F.H.Al-Alwan, Dedekind Modules, Comm.in Algebra, 24(2) (1996) 397-412.
[10] P.F.Smith, Some Remarks on Multiplication Modules, Arch. Math., 50 (1988) 223-235.

Yong Hwan Cho
Department of Mathematics Education and Institute of Pure and Applied Mathematics, Chonbuk National University,
Jeonju 561-756, Korea.
E-mail: cyh@jbnu.ac.kr

[^0]: Received August 6, 2012. Accepted September 25, 2012.
 2010 Mathematics Subject Classification. 13 C 13, 13 A 15.
 Key words and phrases. Key words and phrases : Transform formula, faithful modules and multiplication modules.

