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GROUP OF POLYNOMIAL PERMUTATIONS OF Zpr

Kwankyu Lee and Heisook Lee

Abstract. The set of all polynomial permutations of Zpr forms a
group. We investigate the structure of the group and some related
groups, and completely determine the structure of the group of all
polynomial permutations of Zp2 .

1. Introduction

Let pr be a prime power. If a polynomial over the Galois ring Zpr
induces a permutation of Zpr , then it is called a permutation polynomial.
For r = 1, it is well-known that every permutation of the field Zp is
induced by a polynomial [4]. On the other hand, for r > 1, not every
permutation of Zpr is induced by a polynomial. Hence the notion of a
polynomial permutation, that is, permutation induced by a polynomial
is meaningful in this case.

It is easy to see that the set of all polynomial permutations of Zpr is
a group. Indeed the set of all polynomial permutations of Zpr is clearly
closed under composition and is a finite subset of the symmetric group
of Zpr , and hence forms a subgroup. We investigate the structure of
this group and related groups. In particular, we completely determine
the structure of the group of all polynomial permutations of Zp2 . Along
the way, we review some known results about polynomial permutations
and in general polynomial functions of Zpr , giving simpler proofs than
in literature.

Let us consider the set Ppr of all permutation polynomials in Zpr [x]
and the set Vpr of all polynomials in Zpr [x] inducing the zero function
on Zpr . Let

Ppr = {f(x) | f(x) ∈ Ppr},
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where f(x) = f(x)+Vpr . Then Ppr is a monoid under polynomial compo-
sition, naturally isomorphic to the group of all polynomial permutations
of Zpr . Thus our object of study is Ppr . We write f(x) ≈ g(x) when two
polynomials induce the same function on the base ring.

2. Preliminaries

Let m be a positive integer. Several authors [3, 5, 8] presented some-
what complicated proofs for the following result.

Theorem 2.1. Let m be a positive integer. Let f(x) ∈ Zm[x]. Then
f(x) induces the zero function on Zm if and only if it can be written in
the form

f(x) =
∞∑
n=0

anm

gcd(n!,m)
xn, 0 ≤ an < gcd(n!,m),

where xn denotes the falling power x(x− 1) · · · (x− n+ 1).

Proof. Note that a polynomial can be expressed uniquely as f(x) =∑∞
n=0 bnx

n with bn ∈ Zm. So f(x) induces the zero function on Zm if
and only if

(1) f(k) =
k∑

n=0

bnk
n = 0 for all k ≥ 0.

Note that bkk! divides bkn
k as the binomial coefficient

(
n
k

)
= nk/k! is

an integer. Thus a condition equivalent to (1) is for the coefficients bk
to satisfy bkk! = 0 in Zm for all k ≥ 0. Since all solutions of the last
equation are

bk =
am

gcd(k!,m)
, 0 ≤ a < gcd(k!,m),

we obtain the result.

Corollary 2.2. Every polynomial function on Zm has a unique poly-
nomial representation of the form

f(x) =
m−1∑
n=0

bnx
n, 0 ≤ bn <

m

gcd(n!,m)
.

Carlitz [1] gave several characterizations of polynomial functions on
Zpr . In particular, his Theorem 3 gives a characterization most inter-
esting to us, but it is proved in an indirect way. We give a constructive
proof of the result in a slightly modified form.
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Theorem 2.3. A function χ on Zpr is induced by a polynomial over
Zpr if and only if there are some functions χi : Zp → Zpr , 0 ≤ i ≤ r − 1
such that

(2) χ(c+ kp) =
r−1∑
i=0

(kp)iχi(c)

for all 0 ≤ c < p, 0 ≤ k < pr−1. If a polynomial f(x) induces χ, then
f(c) = χ0(c) and f ′(c) ≡ χ1(c) (mod p) for 0 ≤ c < p.

Proof. Let 0 ≤ c < p, 0 ≤ k < pr−1 throughout. Suppose χ is induced
by a polynomial f(x). Then

(3) χ(c+ kp) = f(c+ kp) =

r−1∑
i=0

(kp)i
f (i)(c)

i!

for each k ≥ 0. It is easy to see that f (i)(x)
i! is in fact a polynomial over

Z. Therefore we can take χi defined by χi(c) = f (i)(c)/i! for 0 ≤ c < p
and 0 ≤ i ≤ r − 1.

To prove the converse, let χ be a function on Zpr satisfying (2).
Carlitz’s interpolation formula [1] says that for 0 ≤ c < p, the polynomial

Lc(x) = (1− (x− c)p−1)pr−1
over Zpr satisfies

Lc(a) =

{
1 if a ≡ c (mod p),

0 if a 6≡ c (mod p).

for a ∈ Zpr . Now let fi(x) =
∑p−1

e=0 χi(e)Le(x) for 0 ≤ i ≤ r − 1.

Note that fi(c + kp) = χi(c). Let g(x) = x −
∑p−1

e=0 eLe(x). Note that

g(c+ kp) = kp. Finally we define a polynomial f(x) =
∑r−1

i=0 g(x)ifi(x).
The polynomial f(x) indeed induces χ on Zpr since

f(c+ kp) =
r−1∑
i=0

g(c+ kp)ifi(c+ kp) =
r−1∑
i=0

(kp)iχi(c) = χ(c+ kp).

Finally suppose a polynomial f(x) induces χ. We have f(c) = χ(c) =
χ0(c), and f(c+ p) ≡ χ0(c) + pχ1(c) (mod p2). Hence

f(c+ p)− f(c) ≡ pχ1(c) (mod p2)

On the other hand by (3),

f(c+ p)− f(c) ≡ f(c) + pf ′(c)− f(c) = pf ′(c) (mod p2).

Therefore pf ′(c) ≡ pχ1(c) (mod p2), and hence f ′(c) ≡ χ1(c) (mod p).
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For f(x) ∈ Zpr [x], let f̄(x) denote the polynomial in Zp[x] obtained
from f(x) by reducing the coefficients modulo p. Keller and Olson [3]
observed that the following theorem is a direct consequence of Theorem
123 in [2].

Theorem 2.4. Let f(x) be a polynomial in Zpr [x]. Then f(x) in-
duces a permutation of Zpr if and only if f̄(x) induces a permutation of
Zp and f̄ ′(c) 6= 0 for every c in Zp.

A characterization of permutation polynomials over Z2r by Rivest [7]
is a consequence of the above theorem. Using the same result, Keller and
Olson [3] and Mullen and Stevens [5] counted the number of polynomial
permutations of Zpr . See Theorem 2.7.

Lemma 2.5. For r ≥ 2p, (x r)′ ≈ 0 over Zp. For p ≤ r < 2p,
(x r)′ ≈ −x r−p over Zp.

Proof. Note that (x r)′ =
∑r−1

i=0 x
i(x − i − 1) r−1−i. If r ≥ 2p, then

i ≥ p or r − 1 − i ≥ p so that (x r)′ ≈ 0. Note that x p − (xp − x) = 0
in Zp[x] because the left side is a polynomial of degree < p vanishing on
Zp. Therefore if p ≤ r < 2p, then

(x r)′ = (x p(x− p) r−p)′ = ((xp − x)x r−p)′

= −x r−p + (xp − x)(x r−p)′ ≈ −x r−p.

Lemma 2.6. Let s ≥ 2p. There are p !(p − 1)pps−2p number of
polynomials f(x) ∈ Zp[x] of degree < s inducing a permutation of Zp
and f ′(c) 6= 0 for every c ∈ Zp.

Proof. Let f(x) = a0 + a1x
1 + a2x

2 + · · ·+ as−1x
s−1 ∈ Zp[x]. Then

f(x) ≈ a0 + a1x
1 + a2x

2 + · · ·+ ap−1x
p−1,

f ′(x) ≈ a1 + a2(x
2)′ + · · ·+ ap−1(x

p−1)′

− ap − ap+1x− ap+2x
2 − · · · − a2p−1x p−1.
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Hence

f ′(0) = (a1 + · · ·+ ap−1(x
p−1)′)|x=0 − ap,

f ′(1) = (a1 + · · ·+ ap−1(x
p−1)′)|x=1 − ap − ap+1,

f ′(2) = (a1 + · · ·+ ap−1(x
p−1)′)|x=2 − ap − ap+12− ap+22!,

...

f ′(p− 1) = (a1 + · · ·+ ap−1(x
p−1)′)|x=p−1 − ap − · · · − a2p−1(p− 1)!.

Because there are p! polynomial permutations of Zp, there are p! choices
of the coefficients a0, a1, . . . , ap−1 for f(x) to induce a permutation of
Zp. For f ′(x) not to vanish on Zp, there are p − 1 choices for each
coefficient ap, ap+1, . . . , a2p−1. And the coefficient ar for r ≥ 2p can be
chosen arbitrarily in Zp. Thus we get the number.

Theorem 2.7. Let r ≥ 2. The number of polynomial permutations
of Zpr is

(4)
p!(p− 1)pprp

r−2p∏pr−1
n=0 gcd(n!, pr)

.

Proof. Every polynomial permutation of Zpr is induced by a poly-
nomial of degree < pr. A polynomial f(x) of degree < pr induces a
permutation of Zpr if and only if f̄(x) is one of the p!(p − 1)ppp

r−2p

number of polynomials satisfying the condition in Theorem 2.4. It fol-
lows that there are p!(p−1)ppp

r−2p×p(r−1)pr number of polynomials f(x)
of degree < pr inducing a permutation of Zpr . But theses polynomials

are divided into classes such that
∏pr−1
n=0 gcd(n!, pr) number of polyno-

mials in the same class induce the same function on Zpr by Theorem
2.1.

3. The group of basic permutation polynomials

In view of Theorem 2.4, we define a basic permutation polynomial
f(x) in Zp[x] as a permutation polynomial over Zp such that its deriv-
ative f ′(x) never vanishes on Zp. We denote by Bp the set of all basic
permutation polynomials.

Lemma 3.1. Let f(x) be a polynomial in Zp[x]. Both of f(x) and
f ′(x) induce the zero function on Zp if and only if f(x) = h(x)(xp− x)2

with some h(x) in Zp[x].
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Proof. If f(x) = h(x)(xp−x)2, then f ′(x) = h′(x)(xp−x)2−2h(x)(xp−
x), and hence f(x) ≈ 0 and f ′(x) ≈ 0 on Zp.

Let us suppose conversely, and write f(x) =
∑

n≥0 anx
n. Then

f(x) ≈ a0 + a1x+ a2x
2 + · · ·+ ap−1x

p−1.

As f(x) ≈ 0, it follows that a0 = a1 = · · · = ap−1 = 0. Now by Lemma
2.5,

f ′(x) =
∑
n≥p

an(xn)′ ≈ −ap − ap+1x− ap+2x
2 − · · · − a2p−1x p−1.

As f ′(x) ≈ 0, we also have ap = ap+1 = · · · = a2p−1 = 0. Hence

f(x) =
∑
n≥2p

xn =
∑
n≥2p

x p(x− p) p(x− 2p)xn−2p = (xp − x)2
∑
n≥2p

xn−2p.

Lemma 3.2. Let r ≥ 2. If f(x) ∈ Zpr [x] induces the zero function
on Zpr , then f̄(x) = h(x)(xp − x)2 for some h(x) in Zp[x].

Proof. Suppose f(x) ≈ 0 on Zpr . Then by Theorem 2.1, we can write

f(x) = app
r−1x p + ap+1p

r−1x p+1 + · · ·+ a2p−1p
r−1x 2p−1 +

∑
n≥2p

anx
n.

Therefore f̄(x) =
∑

n≥2p anx
n = (xp − x)2

∑
n≥2p anx

n−2p.

We define
Bp = {f(x) | f(x) ∈ Bp}

where f(x) denotes the set {f(x) + h(x)(xp − x)2 | h(x) ∈ Zp[x]}. By

Lemma 3.1, note that f(x) = g(x) if and only if f(x) and g(x) are basic
permutation polynomials inducing the same permutation of Zp and their
derivatives also induce the same nonvanishing function on Zp.

Lemma 3.3. Bp is a group under polynomial composition. Let r ≥ 2.
We have a surjective group homomorphism

ϕ : Ppr → Bp

defined by reduction modulo p, that is f(x) 7→ f̄(x).

Proof. We first show that polynomial composition gives a well-defined
operation on Bp. Let f1(x) = g1(x) and f2(x) = g2(x) so that

f1(x) = g1(x) + h1(x)(xp − x)2,

f2(x) = g2(x) + h2(x)(xp − x)2



Group of Polynomial Permutations of Zpr 489

for some h1(x) and h2(x) in Zp[x]. Note that f2 ◦ f1(x) is in Bp since
f2 ◦ f1(x) induces a permutation of Zp and

(f2 ◦ f1)′(x) = f ′2(f1(x))f ′1(x)

does not vanish on Zp. Similarly g2 ◦ g1(x) is in Bp. Note that f2(f1(x))
and g2(g1(x)) induce the same function on Zp, and so do their derivatives
f ′2(f1(x))f ′1(x) and g′2(g1(x))g′1(x). Therefore by Lemma 3.1, there is a
polynomial h(x) such that

f2 ◦ f1(x)− g2 ◦ g1(x) = h(x)(xp − x)2.

This verifies that polynomial composition gives a well-defined operation
on Bp. Hence Bp is a monoid with identity x.

By Theorem 2.4 and Lemma 3.2, the natural map

ϕ : Ppr → Bp

is well-defined and a surjective monoid homomorphism from a group
to a monoid. It follows that Bp is in fact a group, and ϕ is a group
homomorphism.

Through the following series of lemmas, we reveal the structure of
the group Bp completely. See Theorem 3.7.

Lemma 3.4. We have a surjective group homomorphism

ψ : Bp → Pp

defined by f(x) 7→ f(x).

Proof. It is clear that ψ is a well-defined group homomorphism. To
see ψ is surjective, observe that if

f(x) = a0 + a1x
1 + · · ·+ ap−1x

p−1

is a permutation polynomial over Zp, then we can find ap, ap+1, . . . , a2p−1
in Zp such that the polynomial

g(x) = a0 + a1x
1 + · · ·+ ap−1x

p−1 + apx
p + · · ·+ a2p−1x

2p−1
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is a basic permutation polynomial. Indeed ap, ap+1, . . . , a2p−1 are chosen
successively to satisfy

g′(0) = (a1 + · · ·+ ap−1(x
p−1)′)|x=0 − ap 6= 0,

g′(1) = (a1 + · · ·+ ap−1(x
p−1)′)|x=1 − ap − ap+1 6= 0,

g′(2) = (a1 + · · ·+ ap−1(x
p−1)′)|x=2 − ap − ap+12− ap+22! 6= 0,

...

g′(p− 1) = (a1 + · · ·+ ap−1(x
p−1)′)|x=p−1 − ap − · · · − a2p−1(p− 1)! 6= 0.

Then g(x) ≈ f(x), and ψ(g(x)) = f(x).

Let us define

Mp = group of all functions from Zp → Z×p
under usual pointwise multiplication operation. Note that Mp is isomor-
phic to (Z×p )p, p-times direct product of the cyclic group Z×p .

Lemma 3.5. The kernel of ψ is isomorphic to Mp.

Proof. Define λ : kerψ → Mp by mapping f(x) to the function τ
on Zp induced by f ′(x). It is clearly well-defined. To see λ is a group

homomorphism, observe that for f(x), g(x) in kerψ,

(f ◦ g)′(x) = f ′(g(x))g′(x) ≈ f ′(x)g′(x)

because g(x) induces the identity permutation on Zp, and hence λ(f ◦ g(x))

= λ(f(x))λ(g(x)). Injectivity is clear. Finally to show that λ is surjec-
tive, let τ be a function in Mp. Let f(x) = x+ h(x)(xp − x) where h(x)
is a polynomial of degree < p we now determine. Since f ′(x) ≈ 1−h(x),
we need to have h(c) = 1 − τ(c) for every c ∈ Zp. There is a unique
polynomial h(x) of degree < p satisfying this condition. With this h(x),

we have f(x) 7→ τ .

Lemma 3.6. The exact sequence

1 −→ kerψ −→ Bp
ψ−→ Pp −→ 1

splits. Hence Bp is the semidirect product of Pp and kerψ.

Proof. We now define a homomorphism ρ : Pp → Bp such that ψ◦ρ is

the identity on Pp. Let g(x) ∈ Pp. Let f(x) = g(x) + (g′(x)−1)(xp−x).
Then f(x) ≈ g(x) and f ′(x) = 1 + g′′(x)(xp − x) ≈ 1. Therefore f(x)
is a basic permutation polynomial. Thus we define ρ : Pp → Bp by

g(x) 7→ f(x). Then ρ : Pp → Bp is a well-defined group homomorphism.
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Suppose ρ(g(x)) = f(x) with g(x) ∈ Pp. Then by the definition of

ρ, f(x) and g(x) induce the same function on Zp. Therefore ψ(f(x)) =

g(x). Hence ψ ◦ ρ is the identity on Pp.

In Lemma 3.5, we saw kerψ is isomorphic to Mp that is (Z×p )p. Recall
that Pp is isomorphic to

Sp = symmetric group of p letters,

because every permutation of Zp is induced by a polynomial. Thus we
obtain the following theorem that determines the structure of the group
Bp.

Theorem 3.7. Bp is isomorphic to the semidirect product Mpoα Sp
where α : Sp → Aut(Mp) is described by α(σ)(τ) = τ ◦σ for each σ ∈ Sp,
τ ∈Mp.

4. Group of polynomial permutations of Zpr

From now on, we will regard the elements of Ppr as functions on Zpr
rather than equivalence classes of polynomials.

Let r ≥ 2. We now show that there is a natural copy of Bp inside of

Ppr . Let f(x) ∈ Bp. Let σ be the permutation of Zp that f(x) induces.
Let τ be the nonvanishing function on Zp that f ′(x) induces. We then
define a permutation χf on Zpr by

(5) χf (a) = σ(c) + kpτ(c)

for a = c+ kp in Zpr . It is easy to see that χf is a permutation of Zpr .
By Theorem 2.3, it is then indeed a polynomial permutation. Define the
map ξ : Bp → Ppr by f(x) 7→ χf .

Lemma 4.1. The map ξ : Bp → Ppr is an injective group homomor-
phism.

Proof. Let f1(x), f2(x) be in Bp. Suppose f1(x), f ′1(x) induce σ1, τ1
on Zp, respectively and f2(x), f ′2(x) induce σ2, τ2 on Zp, respectively.
Then f1 ◦ f2(x) induces σ1 ◦σ2 on Zp. and (f1 ◦ f2)′(x) = f ′1(f2(x))f ′2(x)
induces (τ1 ◦ σ2)τ2. Observe that for every a = c+ kp in Zpr ,

χf1 ◦ χf2(a) = χf1(σ2(c) + kpτ2(c))

= σ1(σ2(c)) + kpτ2(c)τ1(σ2(c))

= σ1 ◦ σ2(c) + kp(τ1 ◦ σ2)(c)τ2(c)
= χf1◦f2(a).
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Hence ξ is a group homomorphism. If χf is the identity permutation of

Zpr , then σ(c) = c and τ(c) = 1 for 0 ≤ c < p, so f(x) is the identity of
Bp. Hence ξ is injective.

Lemma 4.2. The exact sequence

1 −→ kerϕ −→ Ppr
ϕ−→ Bp −→ 1

splits. Hence Ppr is the semidirect product of Bp and kerϕ.

Proof. Let us show that the composition ϕ ◦ ξ is the identity on Bp.

Let f(x) be in Bp. Let χf be the permutation of Zpr defined by (5).
Suppose a polynomial g(x) in Zpr [x] induces χf . Then by Theorem 2.3,

ḡ(x) and ḡ′(x) induce σ and τ on Zp. Hence ϕ(χf ) = f(x).

The following theorem characterizes the polynomial permutations in
kerϕ. Let ι denote the identity permutation of Zpr .

Lemma 4.3. A permutation χ of Zpr is in kerϕ if and only if χ = ι+µ
where µ is a polynomial function on Zpr satisfying µ(c) ≡ 0 (mod p) and
µ(c+p) ≡ µ(c) (mod p2) for 0 ≤ c < p. The condition for µ is equivalent
to that µ is induced by a polynomial f(x) satisfying f(c) ≡ f ′(c) ≡ 0
(mod p) for 0 ≤ c < p.

Proof. Let 0 ≤ c < p and 0 ≤ k < pr−1 throughout. Suppose χ ∈
kerϕ. Then χ is induced by a polynomial f(x) satisfying f(c) ≡ c
(mod p) and f ′(c) ≡ 1 (mod p). Since χ is a polynomial function, by
Theorem 2.3, there exist χi : Zp → Zpr such that

χ(c+ kp) =
r−1∑
i=0

(kp)iχi(c),

and f(c) = χ0(c) and f ′(c) ≡ χ1(c) (mod p). It follows that χ0(c) ≡ c
(mod p) and χ1(c) ≡ 1 (mod p). So we can write χ0(c) = c + pχ̃0(c)
and χ1(c) = 1 + pχ̃1(c). Then

χ(c+ kp) = c+ pχ̃0(c) + kp(1 + pχ̃1(c)) +
r−1∑
i=2

(kp)iχi(c)

If we define µ by

µ(c+ kp) = χ̃0(c)p+ (kp)χ̃1(c)p+

r−1∑
i=2

(kp)iχi(c),

then χ = ι+µ and µ is a polynomial function by Theorem 2.3 satisfying
µ(c) ≡ 0 (mod p) and µ(c+ p) ≡ χ̃0(c)p = µ(c) (mod p2).
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The converse is proved by reversing the above argument. The equiv-
alent condition for µ follows by Theorem 2.3.

Let r = 2. In this case, the structure of kerϕ is particularly simple.
Let

Tp = group of all functions γ : Zp → Zp
with usual pointwise addition operation. Note that Tp is isomorphic to
(Zp)p, p-times direct product of the additive cyclic group Zp.

Lemma 4.4. The subgroup kerϕ of Pp2 is isomorphic to Tp.

Proof. Let 0 ≤ c, k < p throughout. By Lemma 4.3, χ ∈ kerϕ if and
only if χ = ι+ µ where µ satisfies µ(c+ kp) = µ̃0(c)p with an arbitrary
function µ̃0 from Zp to Zp. In other words, χ ∈ kerϕ if and only if
χ(c + kp) = c + kp + pγ(c) with an an arbitrary function γ from Zp to
Zp. If χ1(c + kp) = c + kp + pγ1(c) and χ2(c) = c + kp + pγ2(c), then
χ2 ◦ χ1(c + kp) = χ2(c + kp + pγ1(c)) = c + kp + pγ1(c) + pγ2(c) =
c + kp + p(γ1(c) + γ2(c)). This shows that kerϕ is isomorphic to the
additive group Tp.

Theorem 4.5. The group of polynomial permutations of Zp2 is iso-
morphic to

Tp oβ (Mp oα Sp),

where β : Mp oα Sp → Aut(Tp) is given by β(τ, σ)(γ) = (γτ) ◦ σ−1.

It follows that the order of the group Pp2 is pp(p − 1)pp!, which is
verified by Theorem 2.7. Moreover from Theorem 4.5, we see that a
Sylow p-subgroup of Pp2 of order pp+1 is the same with that of the Sylow
p-subgroup of the symmetric group Sp2 , namely the wreath product of
the additive group Zp with itself.

5. Remarks

We could determine the structure of Pp2 because of the simple struc-
ture of kerϕ in the case r = 2. However for r > 2 cases, the structure
of kerϕ seems to be more complicated, and we could not resolve it yet.
This remains as a future work.

Starting with [6], Nöbauer had studied polynomial permutations of
Zm, from the same point of view with ours. However, it seems that there
is no duplication among his and our works.
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Akad. Wiss. Math.-Nat. Kl. S.-B. IIa. 162 (1953), 207–233.

[7] R. L. Rivest, Permutation polynomials modulo 2w, Finite Fields Appl. 7 (2001),
287–292.

[8] D. Singmaster, On polynomial functions (mod m), J. Number Theory 6 (1974),
345–352.

Kwankyu Lee
Department of Mathematics, Chosun University,
Gwangju 501-759, Korea.
E-mail: kwankyu@chosun.ac.kr

Heisook Lee
Department of Mathematics, Ewha Womans University,
Seoul 120-750, Korea.
E-mail: hsllee@ewha.ac.kr


