References
- Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F (2007). Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol, 8, 942-9.
- Asao H, Okuyama C, Kumaki S, et al (2001). Cutting edge: the common gamma-chain is an indispensable subunit of the IL-21 receptor complex. J Immunol, 167, 1-5. https://doi.org/10.4049/jimmunol.167.1.1
- Baumann MH, Nolan R, Petrini M, et al (2007). Pleural tuberculosis in the United States: incidence and drug resistance. Chest, 131, 1125-32. https://doi.org/10.1378/chest.06-2352
- Boucher D, Cournoyer D, Stanners CP, Fuks A (1989). Studies on the control of gene expression of the carcinoembryonic antigen family in human tissue. Cancer Res, 49, 847-52.
- Brady J, Hayakawa Y, Smyth MJ, Nutt SL (2004). IL-21 induces the functional maturation of murine NK cells. J Immunol, 172, 2048-58. https://doi.org/10.4049/jimmunol.172.4.2048
- Brandt K, Singh PB, Bulfone-Paus S, Ruckert R (2007). Interleukin-21: a new modulator of immunity, infection, and cancer. Cytokine Growth Factor Rev, 18, 223-32. https://doi.org/10.1016/j.cytogfr.2007.04.003
- Casal RF, Eapen GA, Morice RC, Jimenez CA (2009). Medical thoracoscopy. Curr Opin Pulmon Med, 15, 313-20. https://doi.org/10.1097/MCP.0b013e32832b8b2d
- Chen Z, O'Shea JJ (2008). Th-17 cells: a new fate for differentiating helper T cells. Immunol Res, 41, 87-102. https://doi.org/10.1007/s12026-007-8014-9
- Coquet JM, Kyparissoudis K, Pellicci DG, et al (2007). IL-21 is produced by NKT cells and modulates NKT-cell activation and cytokine production. J Immunol, 178, 2827-34. https://doi.org/10.4049/jimmunol.178.5.2827
- Davies HE, Nicholson JE, Rahman NM, et al (2010). Outcome of patients with nonspecific pleuritis/fibrosis on thoracoscopic pleural biopsies. Eur J Cardiothorac Surg, 38, 472-7. https://doi.org/10.1016/j.ejcts.2010.01.057
- Doelken P (2008). Clinical implications of unexpandable lungs due to pleural disease. Am J Med Sci, 335, 21-5. https://doi.org/10.1097/MAJ.0b013e31815f1a44
- Daha NA, Kurreeman FA, Marques RB, et al (2009). Confirmation of STAT4, IL2/IL-21, CTLA4 polymorphism in Rheumatoid Arthritis. Arthritis Rheum, 60, 1255-60. https://doi.org/10.1002/art.24503
- Elsaesser H, Sauer K, Brooks DG (2009). IL-21 is required to control chronic viral infections. Science, 324, 1569-72. https://doi.org/10.1126/science.1174182
- Ferrer J, Villarino MA, Encabo G, et al (1999). Diagnostic utility of CYFRA 21-1, carcinoembryonic antigen, CA 125 neuron specific enolase, and squamous cell antigen level determinations in the serum and pleural fluid of patients with pleural effusions. Cancer, 86, 1488-95. https://doi.org/10.1002/(SICI)1097-0142(19991015)86:8<1488::AID-CNCR15>3.0.CO;2-Y
- Furukawa J, Hara I, Nagai H, et al (2006). Interleukin-21 gene transfection into mouse bladder cancer cells results in tumor rejection through the cytotoxic T lymphocyte response. J Urol, 176, 1198-203. https://doi.org/10.1016/j.juro.2006.04.037
- Gupta Bk, Bharat V, Bandyopadhyay D (2010). Role of adenosine desaminase estimation in differentiation of tuberculous from non tuberculous exudative pleural effusions. J Clin Med Res, 2, 79-84.
-
Habib T, Senadheera S, Weinberg K, KaushanskyK (2002). The common gamma chain (
${\gamma}c$ ) is a required signaling component of the IL-21 receptor and supports IL-21-induced cell proliferation via JAK3. Biochemistry, 41, 8725-31. https://doi.org/10.1021/bi0202023 - Hackbarth JS, Murata K, Reilly WM, Algeciras-Schimnich A (2010). Performance of CEA and CA19-9 in identifying pleural effusions caused by malignancies. Clin Biochem, 43, 1051-5. https://doi.org/10.1016/j.clinbiochem.2010.05.016
- Harada M, Magara-Koyanagi K, Watarai H, et al (2006). IL -21 induced Be cell apoptosis mediated by natural killer T cells suppress IgE responses. J Exp Med, 203, 2929-37. https://doi.org/10.1084/jem.20062206
- Heffner JE (2008). Diagnosis and management of malignant pleural effusions. Respirology, 13, 5-20.
- Hoeve MA, Savage ND, de Boer T, et al (2006). Divergent effects of IL-12 and IL-23 on the production of IL-17 by human T cells. Eur J Immunol, 36, 661-70. https://doi.org/10.1002/eji.200535239
- Khaleeq G, Musani AI (2008). Emerging paradigms in the management of malignant pleural effusions. Respir Med, 102, 939-48. https://doi.org/10.1016/j.rmed.2008.01.022
- Korn T, Bettelli E, Gao W, et al (2007). IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature, 448, 484-7. https://doi.org/10.1038/nature05970
- Lim J, Derrick SC, Kolibab K, et al (2009). Early pulmonary cytokine and chemokine responses in mice immunized with three different vaccines against Mycobacterium tuberculosis determined by PCR array. Clin Vaccine Immunol, 16, 122-6. https://doi.org/10.1128/CVI.00359-08
- Liu Y, Helms C, Liao W, et al (2008). A genome-wide association study of Psoriasis and psoriatic arthritis identifies new gene loci. PLoS Genet, 4, e100004
- Liu Z, Yang L, Cui Y, et al (2009). IL-21 enhances NK cell activation and cytolytic activities and induces TH17 cell differentiation in inflammatory bowel diseases. Inflamm Bowel Dis, 15, 1133-44. https://doi.org/10.1002/ibd.20923
- Lucivero G, Pierucci G, Bonomo L (1988). Lymphocyte subsets in peripheral blood and pleural fluid. Eur Respir J, 1, 337-40.
-
Ma HL, Whitters MJ, Konz RF, et al (2003). IL-21 activates both innate and adaptive immunity to generate potent antitumor responses that require perforin but are independent of IFN-
$\gamma$ . J Immunol, 171, 608-15. https://doi.org/10.4049/jimmunol.171.2.608 - Maskell NA, Gleeson FV, Davies RJ (2003). Standard pleural biopsy versus CT-guided cutting-needle biopsy for diagnosis of malignant disease in pleural effusions: a randomised controlled trial. Lancet, 361, 1326-30. https://doi.org/10.1016/S0140-6736(03)13079-6
- Musani AI (2009). Treatment options for malignant pleural effusion. Curr Opin Pulm Med, 15, 380-7. https://doi.org/10.1097/MCP.0b013e32832c6a8a
- Nurieva R, Yang XO, Martinez G, et al (2007). Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature, 448, 480-3. https://doi.org/10.1038/nature05969
- Ozaki K, Kikly K, Michalovich D, Young PR, Leonard WJ (2000). Cloning of a type I cytokine receptor most related to the IL-2 receptor beta chain. Proc Natl Acad Sci USA, 97, 11439-44. https://doi.org/10.1073/pnas.200360997
- Parrish-Novak J, Dillon SR, Nelson A, et al (2000). Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature, 408, 57-63. https://doi.org/10.1038/35040504
- Pomjanski N, Juergen Grote H, Doganay P, and et al (2005). Immunocytochemical identification of carcinomas of unknown primary in serous effusions. Diagn Cytopathol, 33, 309-15. https://doi.org/10.1002/dc.20393
- Radjenovik-Petrovic T, Pejcic T, Nastasijevic-Borovac D, et al (2009). Diagnostic value of CEA in pleural effusions for differential diagnosis of benign and malignant pleural effusions. Med Arh, 63, 141-2.
- Sarra M, Monteleone G (2010). Interleukin-21: a new mediator of inflammation in systemic lupus erythematosus. J Biomed Biotechnol, 294, 582.
- Sondergaard H, Frederiksen KS, Thygesen P, et al (2007). Interleukin 21 therapy increases the density of tumor infiltrating CD8(+)T cells and inhibits the growth of syngeneic tumors. Cancer Immunol ther, 56, 1417-28. https://doi.org/10.1007/s00262-007-0285-4
- Sondergaard H, Skak K (2009). IL-21: roles in immunopathology and cancer therapy. Tissue Antigens, 74, 467-79. https://doi.org/10.1111/j.1399-0039.2009.01382.x
- Spector M, Polak JS (2008). Management of malignant pleural effusions. Semin Respir Crit Care Med, 29, 405-13. https://doi.org/10.1055/s-2008-1081283
- Spolski R, Leonard WJ (2008). Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu Rev Immunol, 26, 57-79. https://doi.org/10.1146/annurev.immunol.26.021607.090316
- Sriram KB, Relan V, Clarke BE, et al (2011). Diagnostic molecular biomarkers for malignant pleural effusions. Future Oncology, 7, 737-52. https://doi.org/10.2217/fon.11.45
- Wang G, Tschoi M, Spolski R, et al (2003). In vivo antitumor activity of interleukin 21 mediated by natural killer cells. Cancer Res, 63, 9016-22.
- Wang T, Lv M, Qian Q, et al (2011). Increased frequencies of T helper type 17 cells in tuberculous pleural effusion. Tuberculosis (Edinb), 91, 231-7. https://doi.org/10.1016/j.tube.2011.02.002
- Westfall DE, Fan X, Marchevsky AM (2010). Evidence-based guidelines to optimize the selection of antibody panels in cytopathology: pleural effusions with malignant epithelioid cells. Diagn Cytopathol, 38, 9-14.
- Yang HB, Shi HZ (2008). T lymphocytes in pleural effusion. Chin Med J (Engl), 121, 579-80.
- Ye ZJ, Zhou Q, Zhang JC, et al (2011). CD39+ Regulatory T cells suppress generation and differentiation of Th-17 cells in human malignant pleural effusion via a LAP-dependent mechanism. Respir Res, 12, 77. https://doi.org/10.1186/1465-9921-12-77
- Zhou L, Ivanov II, Spolski R, et al (2007). IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol, 8, 967-74. https://doi.org/10.1038/ni1488
Cited by
- Utility of Nuclear Morphometry in Effusion Cytology vol.15, pp.16, 2014, https://doi.org/10.7314/APJCP.2014.15.16.6919
- EGFR-L858R mutant enhances lung adenocarcinoma cell invasive ability and promotes malignant pleural effusion formation through activation of the CXCL12-CXCR4 pathway vol.5, pp.1, 2015, https://doi.org/10.1038/srep13574