DOI QR코드

DOI QR Code

Metformin Inhibits Growth of Hepatocellular Carcinoma Cells by Inducing Apoptosis Via Mitochondrion-mediated Pathway

  • Xiong, Yu (Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University) ;
  • Lu, Qing-Jun (Department of General Surgery, Binzhou Central Hospital) ;
  • Zhao, Jing (Department of Cardiac Surgical Intensive Care Unit, Provincial Hospital Affiliated to Shandong University) ;
  • Wu, Guo-Yang (Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University)
  • Published : 2012.07.31

Abstract

Recently, population-based studies of type 2 diabetes patients have provided evidence that metformin treatment is associated with a reduced cancer incidence and mortality, but its mode of action remains unclear. Here we report effects of metformin on hepatocellular carcinoma (HCC) Hep-G2 cells and details of molecular mechanisms of metformin activity. Our research indicates that metformin displays anticancer activity against HCC through inhibition of the mTOR translational pathway in an AMPK-independent manner, leading to G1 arrest in the cell-cycle and subsequent cell apoptosis through the mitochondrion-dependent pathway. Furthermore, we showed that metformin strongly attenuated colony formation and dramatically inhibited Hep-G2 tumor growth in vivo. In conclusion, our studies suggested that metformin might have potential as a cytotoxic drug in the prevention and treatment of HCC.

Keywords

References

  1. An D , Kewalramani G, Chan JK Y et al (2006). Diabetologia, 49, 2174-84. https://doi.org/10.1007/s00125-006-0338-9
  2. Avila MA, Berasain C, Sangro B, et al (2006). New therapies for hepatocellular carcinoma. Oncogene, 25, 3866-84. https://doi.org/10.1038/sj.onc.1209550
  3. Bailey CJ, Turner RC (1996). Metformin. N Engl J Med, 334, 574-9. https://doi.org/10.1056/NEJM199602293340906
  4. Bolster DR, Crozier SJ, Kimball SR, et al (2002). AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through downregulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem, 277, 977-80.
  5. Bowker SL, Majumdar SR, Veugelers P et al (2006). Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care, 29, 254-8. https://doi.org/10.2337/diacare.29.02.06.dc05-1558
  6. Buzzai M, Jones RG, Amaravadi RK (2007). Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res, 67, 6745-52. https://doi.org/10.1158/0008-5472.CAN-06-4447
  7. Cantrell LA, Zhou C, Mendivil A, et al (2010). Metformin is a potent inhibitor of endometrial cancer cell proliferation-implications for a novel treatment strategy. Gynecologic Oncology, 116, 92-8. https://doi.org/10.1016/j.ygyno.2009.09.024
  8. Currie CJ, Poole CD, Gale EA (2009). The influence of glucose-lowering therapie on cancer risk in type 2 diabetes. Diabetologia, 52, 1766-77. https://doi.org/10.1007/s00125-009-1440-6
  9. Daniels D, Grytdal S, Wasley A (2009). Surveillance for acute viral hepatitis-United States, 2007. MMWR Surveill Summ, 58, 1-27.
  10. Dowling RJO, Zakikhani M, Fantus IG, et al (2007). Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res, 67, 10804-12. https://doi.org/10.1158/0008-5472.CAN-07-2310
  11. Duncan B, Schmidt MI (2009). Metformin, cancer, alphabet soup, and the role of epidemiology in etiologic research. Diabetes Care, 32, 1748-50. https://doi.org/10.2337/dc09-1183
  12. Evans JM, Donnelly LA, Emslie-Smith AM, et al (2005). Metformin and reduced risk of cancer in diabetic patients. BMJ, 330, 1304-5. https://doi.org/10.1136/bmj.38415.708634.F7
  13. Goodwin PJ, Stambolic V, Lemieux J, et al (2011). Evaluation of metformin in early breast cancer: a modification of the traditional paradigm for clinical testing of anti-cancer agents. Breast Cancer Res Treat, 126, 215-20. https://doi.org/10.1007/s10549-010-1224-1
  14. Gotlieb WH, Saumet J, Beauchamp MC (2008). In vitro metformin anti-neoplastic activity in epithelial ovarian cancer. Gynecologic Oncology, 110, 246-50. https://doi.org/10.1016/j.ygyno.2008.04.008
  15. Hidalgo M, Rowinsky EK (2000). The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene, 19, 6680-6. https://doi.org/10.1038/sj.onc.1204091
  16. Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K (2009). Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res, 69, 7507-11. https://doi.org/10.1158/0008-5472.CAN-09-2994
  17. Holland EC, Sonenberg N, Pandolfi PP, et al (2004). Signaling control of mRNA translation in cancer pathogenesis. Oncogene, 23, 3138-44. https://doi.org/10.1038/sj.onc.1207590
  18. Huang X, Wullschleger S, Shpiro N, et al (2008). Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice. Biochem J, 412, 211-21. https://doi.org/10.1042/BJ20080557
  19. Kahn BB, Alquier T, Carling D, et al (2005). AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab, 1, 15-25. https://doi.org/10.1016/j.cmet.2004.12.003
  20. Kalender A, Selvaraj A, Kim SY, et al (2010). Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab, 11, 390-401. https://doi.org/10.1016/j.cmet.2010.03.014
  21. Lee MS, Hsu CC, Wahlqvist M, et al (2011). Type 2 diabetes increases and metformin reduces total, colorectal, liver and pancreatic cancer incidences in Taiwanese: a representative population prospective cohort study of 800,000 individuals. BMC Cancer, 11, 20. https://doi.org/10.1186/1471-2407-11-20
  22. Libby G, Donnelly LA, Donnan PT, et al (2009). New users of metformin are at low risk of incident cancer: A cohort study among people with type 2 diabetes. Diabetes Care, 32, 1620-5. https://doi.org/10.2337/dc08-2175
  23. Li DH, Ching JS, Yeung M, et al (2009). Antidiabetic therapies affect risk of pancreatic cancer. Gastroenterology, 137, 482-8. https://doi.org/10.1053/j.gastro.2009.04.013
  24. Sahra IB, Laurent K, Loubat A, et al (2008). The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene, 27, 3576-86. https://doi.org/10.1038/sj.onc.1211024
  25. Schneider MB, Matsuzaki H, Haorah J, et al (2001). Prenvention of pancreatic cancer induction in hamsters by metformin. Gastroenterology, 120, 1263-70. https://doi.org/10.1053/gast.2001.23258
  26. Soranna D, Scotti L, Zambon A (2012). Cancer Risk Associated with Use of Metformin and Sulfonylurea in Type 2 Diabetes: A Meta-Analysis. The Oncologist, 17, 1083-7159.
  27. Wang LW, Li ZS, Zou DW, et al (2008). Metformin induces apoptosis of pancreatic cancer cells. World J Gastroenterol, 14, 7192-8. https://doi.org/10.3748/wjg.14.7192
  28. Wright JL, Stanford JL (2009). Metformin use and prostate cancer in Caucasian men: Results from a population-based case-control study. Cancer Causes Control, 20, 1617-22. https://doi.org/10.1007/s10552-009-9407-y
  29. Wullschleger S, Loewith R, Hall MN (2006). TOR signaling in growth and metabolism. Cell, 124, 471-84. https://doi.org/10.1016/j.cell.2006.01.016
  30. Yu Y, Sato JD (1999). MAP kinases, phosphatidylinositol 3-kinase, and p70 S6 kinase mediate the mitogenic response of human endothelial cells to vascular endothelial growth factor. J Cell Physiol, 178, 235-46. https://doi.org/10.1002/(SICI)1097-4652(199902)178:2<235::AID-JCP13>3.0.CO;2-S
  31. Zakikhani M, Dowling R, Fantus IG, et al (2006). Metformin Is an AMP Kinase-Dependent Growth Inhibitor for Breast Cancer Cells. Cancer Res, 66, 10269-73. https://doi.org/10.1158/0008-5472.CAN-06-1500
  32. Zhu Z, Jiang W, Thompson MD, et al (2011). Metformin as an energy restriction mimetic agent for breast cancer prevention. J Carcinog, 10, 17. https://doi.org/10.4103/1477-3163.83043

Cited by

  1. Metformin suppresses hepatocellular carcinoma cell growth through induction of cell cycle G1/G0 phase arrest and p21CIP and p27KIP expression and downregulation of cyclin D1 in vitro and in vivo vol.30, pp.5, 2013, https://doi.org/10.3892/or.2013.2718
  2. The mTOR pathway in hepatic malignancies vol.58, pp.2, 2013, https://doi.org/10.1002/hep.26323
  3. Puerarin inhibits growth and induces apoptosis in SMMC-7721 hepatocellular carcinoma cells vol.10, pp.5, 2014, https://doi.org/10.3892/mmr.2014.2512
  4. Metformin reverses multidrug resistance in human hepatocellular carcinoma Bel-7402/5-fluorouracil cells vol.10, pp.6, 2014, https://doi.org/10.3892/mmr.2014.2614
  5. Diabetes - Increased Risk for Cancers through Chromosomal Aberrations? vol.15, pp.11, 2014, https://doi.org/10.7314/APJCP.2014.15.11.4571
  6. Effect of metformin on apoptosis, cell cycle arrest migration and invasion of A498 cells vol.9, pp.6, 2014, https://doi.org/10.3892/mmr.2014.2097
  7. Anti-Tumor Effects of Metformin in Animal Models of Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis vol.10, pp.6, 2015, https://doi.org/10.1371/journal.pone.0127967
  8. Effects of Metformin on Cell Kinetic Parameters of MCF-7 Breast Cancer Cells in Vitro vol.16, pp.6, 2015, https://doi.org/10.7314/APJCP.2015.16.6.2351
  9. Impact of insulin resistance on hepatocellular carcinoma vol.56, pp.4, 2015, https://doi.org/10.2957/kanzo.56.127
  10. Metformin inhibits growth of lung adenocarcinoma cells by inducing apoptosis via the mitochondria‑mediated pathway pp.1792-1082, 2015, https://doi.org/10.3892/ol.2015.3450
  11. Metformin induces apoptosis via a mitochondria-mediated pathway in human breast cancer cells in vitro vol.11, pp.5, 2016, https://doi.org/10.3892/etm.2016.3143
  12. Metformin Synergistically Enhances Antitumor Activity of Histone Deacetylase Inhibitor Trichostatin A Against Osteosarcoma Cell Line vol.32, pp.4, 2013, https://doi.org/10.1089/dna.2012.1926
  13. Novel approaches to drug discovery for the treatment of type 2 diabetes vol.9, pp.9, 2014, https://doi.org/10.1517/17460441.2014.941352
  14. Liquiritin induces apoptosis and autophagy in cisplatin (DDP)-resistant gastric cancer cells in vitro and xenograft nude mice in vivo vol.51, pp.5, 2017, https://doi.org/10.3892/ijo.2017.4134
  15. studies vol.13, pp.13, 2018, https://doi.org/10.2217/nnm-2017-0386
  16. Metformin Counteracts HCC Progression and Metastasis Enhancing KLF6/p21 Expression and Downregulating the IGF Axis vol.2019, pp.1687-8345, 2019, https://doi.org/10.1155/2019/7570146
  17. Anti-proliferative and anti-apoptotic potential effects of epigallocatechin-3-gallate and/or metformin on hepatocellular carcinoma cells: in vitro study pp.1573-4978, 2019, https://doi.org/10.1007/s11033-019-04653-6