DOI QR코드

DOI QR Code

Effect of coenzyme Q10 and Ardisia japonica Blume on plasma and liver lipids, platelet aggregation, and erythrocyte Na efflux channels in simvastatin-treated guinea pigs

  • Kang, Min Sook (Department of Foods and Nutrition, Jeju National University) ;
  • Yang, Hun Mo (Department of Foods and Nutrition, Jeju National University) ;
  • Kang, Ja Young (Department of Foods and Nutrition, Jeju National University) ;
  • Ryou, Sung Hee (Department of Foods and Nutrition, Jeju National University) ;
  • Kang, Jung Sook (Department of Foods and Nutrition, Jeju National University)
  • Received : 2012.04.19
  • Accepted : 2012.08.30
  • Published : 2012.10.31

Abstract

Forty guinea pigs were divided into four groups and fed 0.04% cholesterol based control diet, plus 0.05% simvastatin, and statin plus 0.1% CoQ10 or 10% Ardisia Japonica Blume (AJB) leave powder for 4 weeks. Plasma total cholesterol levels decreased significantly in all groups fed the statin-containing diet compared with that in guinea pigs fed the control diet (P < 0.01). Plasma and liver triglycerides decreased significantly in the statin plus CoQ10 group compared with those in the control (both P < 0.05). Maximum platelet aggregation was significantly higher in the statin plus CoQ10 group than that in the other groups (P < 0.05). Na-K ATPase activity increased in the statin group and decreased in the statin plus CoQ10 group (P < 0.01). Na-K co-transport and Na passive transport decreased significantly in the control group compared with those in the other groups (both P < 0.05). Intracellular Na was highest in the statin group and lowest in the statin plus CoQ10 group and was correlated with Na-K ATPase activity. Thiobarbituric acid reactive substance production in platelet-rich plasma and liver tended to decrease in the statin plus CoQ10 group compared with those in the other groups. Plasma glutamic-pyruvic transaminase and glutamic-oxaloacetic transaminase increased significantly in the statin group compared with those in the control (P < 0.05). These result suggest that antioxidant rich AJB did not have positive effects on cardiovascular disease parameters. The statin plus CoQ10 seemed to decrease cholesterol more efficiently than that of statin alone.

Keywords

References

  1. King DE, Mainous AG 3rd, Egan BM, Player M, Geesey ME. Use of statins and blood pressure. Am J Hypertens 2007;20:937-41. https://doi.org/10.1016/j.amjhyper.2007.03.018
  2. Matsuno H, Takei M, Hayashi H, Nakajima K, Ishisaki A, Kozawa O. Simvastatin enhances the regeneration of endothelial cells via VEGF secretion in injured arteries. J Cardiovasc Pharmacol 2004;43:333-40. https://doi.org/10.1097/00005344-200403000-00002
  3. Susic D, Varagic J, Ahn J, Slama M, Frohlich ED. Beneficial pleiotropic vascular effects of rosuvastatin in two hypertensive models. J Am Coll Cardiol 2003;42:1091-7. https://doi.org/10.1016/S0735-1097(03)00926-4
  4. Staal A, Frith JC, French MH, Swartz J, Güngör T, Harrity TW, Tamasi J, Rogers MJ, Feyen JH. The ability of statins to inhibit bone resorption is directly related to their inhibitory effect on HMG-CoA reductase activity. J Bone Miner Res 2003;18:88-96. https://doi.org/10.1359/jbmr.2003.18.1.88
  5. Petanceska SS, DeRosa S, Olm V, Diaz N, Sharma A, Thomas- Bryant T, Duff K, Pappolla M, Refolo LM. Statin therapy for Alzheimer's disease: will it work? J Mol Neurosci 2002;19:155-61. https://doi.org/10.1007/s12031-002-0026-2
  6. Kaneta S, Satoh K, Kano S, Kanda M, Ichihara K. All hydrophobic HMG-CoA reductase inhibitors induce apoptotic death in rat pulmonary vein endothelial cells. Atherosclerosis 2003;170:237-43. https://doi.org/10.1016/S0021-9150(03)00301-0
  7. Littarru GP, Langsjoen P. Coenzyme Q10 and statins: biochemical and clinical implications. Mitochondrion 2007;7 Suppl:S168-74.
  8. Nawarskas JJ. HMG-CoA reductase inhibitors and coenzyme Q10. Cardiol Rev 2005;13:76-9. https://doi.org/10.1097/01.crd.0000154790.42283.a1
  9. Lamperti C, Naini AB, Lucchini V, Prelle A, Bresolin N, Moggio M, Sciacco M, Kaufmann P, DiMauro S. Muscle coenzyme Q10 level in statin-related myopathy. Arch Neurol 2005;62:1709-12. https://doi.org/10.1001/archneur.62.11.1709
  10. Dhanasekaran M, Ren J. The emerging role of coenzyme Q-10 in aging, neurodegeneration, cardiovascular disease, cancer and diabetes mellitus. Curr Neurovasc Res 2005;2:447-59. https://doi.org/10.2174/156720205774962656
  11. Kamzalov S, Sumien N, Forster MJ, Sohal RS. Coenzyme Q intake elevates the mitochondrial and tissue levels of coenzyme Q and alpha-tocopherol in young mice. J Nutr 2003;133:3175-80.
  12. Maroz A, Anderson RF, Smith RA, Murphy MP. Reactivity of ubiquinone and ubiquinol with superoxide and the hydroperoxyl radical: implications for in vivo antioxidant activity. Free Radic Biol Med 2009;46:105-9. https://doi.org/10.1016/j.freeradbiomed.2008.09.033
  13. Lopez-Lluch G, Barroso MP, Martin SF, Fernandez-Ayala DJ, Gomez-Diaz C, Villalba JM, Navas P. Role of plasma membrane coenzyme Q on the regulation of apoptosis. Biofactors 1999;9:171-7. https://doi.org/10.1002/biof.5520090212
  14. Ryszawa N, Kawczyńska-Drozdz A, Pryjma J, Czesnikiewicz-Guzik M, Adamek-Guzik T, Naruszewicz M, Korbut R, Guzik TJ. Effects of novel plant antioxidants on platelet superoxide production and aggregation in atherosclerosis. J Physiol Pharmacol 2006;57:611-26.
  15. Sobotkova A, Masova-Chrastinová L, Suttnar J, Stikarova J, Majek P, Reicheltova Z, Kotlin R, Weisel JW, Maly M, Dyr JE. Antioxidants change platelet responses to various stimulating events. Free Radic Biol Med 2009;47:1707-14. https://doi.org/10.1016/j.freeradbiomed.2009.09.015
  16. Merlo Pich M, Castagnoli A, Biondi A, Bernacchia A, Tazzari PL, D'Aurelio M, Parenti Castelli G, Formiggini G, Conte R, Bovina C, Lenaz G. Ubiquinol and a coenzyme Q reducing system protect platelet mitochondrial function of transfusional buffy coats from oxidative stress. Free Radic Res 2002;36:429-36. https://doi.org/10.1080/10715760290021289
  17. Luzak B, Boncler M, Rywaniak J, Wilk R, Stanczyk L, Czyz M, Rysz J, Watala C. The effect of a platelet cholesterol modulation on the acetylsalicylic acid-mediated blood platelet inhibition in hypercholesterolemic patients. Eur J Pharmacol 2011;658:91-7. https://doi.org/10.1016/j.ejphar.2011.02.026
  18. Uyuklu M, Meiselman HJ, Baskurt OK. Effect of decreased plasma cholesterol by atorvastatin treatment on erythrocyte mechanical properties. Clin Hemorheol Microcirc 2007;36:25-33.
  19. Villar J, Montilla C, Muniz-Grijalvo O, Muriana FG, Stiefel P, Ruiz-Gutierrez V, Carneado J. Erythrocyte Na(+)-Li+ countertransport in essential hypertension: correlation with membrane lipids levels. J Hypertens 1996;14:969-73.
  20. Lijnen P, Fenyvesi A, Bex M, Bouillon R, Amery A. Erythrocyte cation transport systems and membrane lipids in insulin-dependent diabetes. Am J Hypertens 1993;6:763-70.
  21. Heilmann L, von Tempelhoff GF, Ulrich S. The Na+/K+ co-transport system in erythrocytes from pregnant patients. Arch Gynecol Obstet 1993;253:167-74. https://doi.org/10.1007/BF02766642
  22. Duke JA, Ayensu ES. Medicinal Plants of China, Vol 2. Algonac: Reference Publications; 1985. p.705S.
  23. Kobayashi H, de Mejia E. The genus Ardisia: a novel source of health-promoting compounds and phytopharmaceuticals. J Ethnopharmacol 2005;96:347-54. https://doi.org/10.1016/j.jep.2004.09.037
  24. Jia Z, Koike K, Nikaido T, Ohmoto T, Ni M. Triterpenoid saponins from Ardisia crenata and their inhibitory activity on cAMP phosphodiesterase. Chem Pharm Bull (Tokyo) 1994;42: 2309-14. https://doi.org/10.1248/cpb.42.2309
  25. Newell AM, Yousef GG, Lila MA, Ramírez-Mares MV, de Mejia EG. Comparative in vitro bioactivities of tea extracts from six species of Ardisia and their effect on growth inhibition of HepG2 cells. J Ethnopharmacol 2010;130:536-44. https://doi.org/10.1016/j.jep.2010.05.051
  26. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 1957;226:497-509.
  27. Kang JS, Cregor MD, Smith JB. Effect of calcium on blood pressure, platelet aggregation and erythrocyte sodium transport in Dahl salt-sensitive rats. J Hypertens 1990;8:245-50.
  28. Scharnagl H, Vogel M, Abletshauser C, Freisinger F, Stojakovic T, März W. Efficacy and safety of fluvastatin-extended release in hypercholesterolemic patients: morning administration is equivalent to evening administration. Cardiology 2006;106:241-8. https://doi.org/10.1159/000093200
  29. Saito Y, Goto Y, Dane A, Strutt K, Raza A. Randomized doseresponse study of rosuvastatin in Japanese patients with hypercholesterolemia. J Atheroscler Thromb 2003;10:329-36. https://doi.org/10.5551/jat.10.329
  30. Galus R, Wlodarski P, Wlodarski K. Influence of fluvastatin on bone formation induced by demineralized bone matrix in mice. Pharmacol Rep 2006;58:443-7.
  31. Davis HR Jr, Pula KK, Alton KB, Burrier RE, Watkins RW. The synergistic hypocholesterolemic activity of the potent cholesterol absorption inhibitor, ezetimibe, in combination with 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors in dogs. Metabolism 2001;50:1234-41. https://doi.org/10.1053/meta.2001.26737
  32. Sawada M, Matsuo M, Seki J. Inhibition of cholesterol synthesis causes both hypercholesterolemia and hypocholesterolemia in hamsters. Biol Pharm Bull 2002;25:1577-82. https://doi.org/10.1248/bpb.25.1577
  33. Kim JL, Chae IS, Kang YH, Kang JS. Effect of onion and beet on plasma and liver lipids, platelet aggregation, and erythrocyte Na efflux in simvastatin treated hypercholesterolmic rats. Nutr Res Pract 2008;2:211-7. https://doi.org/10.4162/nrp.2008.2.4.211
  34. Kim YH, Moon YI, Kang YH, Kang JS. Effect of coenzyme Q10 and green tea on plasma and liver lipids, platelet aggregation, TBARS production and erythrocyte Na leak in simvastatin treated hypercholesterolmic rats. Nutr Res Pract 2007;1:298-304. https://doi.org/10.4162/nrp.2007.1.4.298
  35. Dietschy JM, Turley SD, Spady DK. Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. J Lipid Res 1993;34:1637-59.
  36. Fernandez ML. Guinea pigs as models for cholesterol and lipoprotein metabolism. J Nutr 2001;131:10-20.
  37. Haramaki N, Ikeda H, Takenaka K, Katoh A, Sugano R, Yamagishi S, Matsuoka H, Imaizumi T. Fluvastatin alters platelet aggregability in patients with hypercholesterolemia: possible improvement of intraplatelet redox imbalance via HMG-CoA reductase. Arterioscler Thromb Vasc Biol 2007;27:1471-7. https://doi.org/10.1161/ATVBAHA.106.128793
  38. Chello M, Spadaccio C, Patti G, Lusini M, Barbato R, Goffredo C, Di Sciascio G, Covino E. Simvastatin reduces platelet-endocardium adhesion in atrial fibrillation. Atherosclerosis 2008;197:588-95. https://doi.org/10.1016/j.atherosclerosis.2007.08.021
  39. Broncel M, Balcerak M, Cieślak D, Duchnowicz P, Koter- Michalak M, Sikora J, Chojnowska-Jezierska J. Effect of fluvastatin extended release on the protein-lipid structure of erythrocyte membrane and C-reactive protein in patients with hyperlipidemia. Pol Merkur Lekarski 2007;22:107-11.
  40. Upaganlawar A, Farswan M, Rathod S, Balaraman R. Modification of biochemical parameters of gentamicin nephrotoxicity by coenzyme Q10 and green tea in rats. Indian J Exp Biol 2006;44:416-8.
  41. Fernandez ML, Lin EC, Trejo A, McNamara DJ. Prickly pear (Opuntica sp.) pectin reverses low density lipoprotein receptor suppression induced by a hypercholesterolemic diet in guinea pigs. J Nutr 1992;122:2330-40

Cited by

  1. Coenzyme Q10 supplementation improves metabolic parameters, liver function and mitochondrial respiration in rats with high doses of atorvastatin and a cholesterol-rich diet vol.13, pp.1, 2014, https://doi.org/10.1186/1476-511X-13-22
  2. Protective Potential of Ginseng and/or Coenzyme Q10 on Doxorubicin-induced Testicular and Hepatic Toxicity in Rats vol.9, pp.1, 2012, https://doi.org/10.3889/oamjms.2021.7063