DOI QR코드

DOI QR Code

Optimized mixture of hops rho iso-alpha acids-rich extract and acacia proanthocyanidins-rich extract reduces insulin resistance in 3T3-L1 adipocytes and improves glucose and insulin control in db/db mice

  • Tripp, Matthew L. (MetaProteomics LLC) ;
  • Darland, Gary (MetaProteomics LLC) ;
  • Konda, Veera Reddy (MetaProteomics LLC) ;
  • Pacioretty, Linda M. (Bionexus, Ltd.) ;
  • Chang, Jyh-Lurn (MetaProteomics LLC) ;
  • Bland, Jeffrey S. (MetaProteomics LLC) ;
  • Babish, John G. (Bionexus, Ltd.)
  • Received : 2011.11.18
  • Accepted : 2012.07.23
  • Published : 2012.10.31

Abstract

Rho iso-alpha acids-rich extract (RIAA) from Humulus lupulus (hops) and proanthocyanidins-rich extracts (PAC) from Acacia nilotica exert anti-inflammatory and anti-diabetic activity in vitro and in vivo. We hypothesized that a combination of these two extracts would exert enhanced effects in vitro on inflammatory markers and insulin signaling, and on nonfasting glucose and insulin in db/db mice. Over 49 tested combinations, RIAA:PAC at 5:1 ($6.25{\mu}g/mL$) exhibited the greatest reductions in $TNF{\alpha}$-stimulated lipolysis and IL-6 release in 3T3-L1 adipocytes, comparable to $5{\mu}g/mL$ troglitazone. Pretreatment of 3T3-L1 adipocytes with this combination ($5{\mu}g/mL$) also led to a 3-fold increase in insulin-stimulated glucose uptake that was comparable to $5{\mu}g/mL$ pioglitazone or $901{\mu}g/mL$ aspirin. Finally, db/db mice fed with RIAA:PAC at 5:1 (100 mg/kg) for 7 days resulted in 22% decrease in nonfasting glucose and 19% decrease in insulin that was comparable to 0.5 mg/kg rosiglitazone and better than 100 mg/kg metformin. RIAA:PAC mixture may have the potential to be an alternative when conventional therapy is undesirable or ineffective, and future research exploring its long-term clinical application is warranted.

Keywords

References

  1. Ford ES. Prevalence of the metabolic syndrome defined by the International Diabetes Federation among adults in the U.S. Diabetes Care 2005;28:2745-9. https://doi.org/10.2337/diacare.28.11.2745
  2. Alexander CM. The coming of age of the metabolic syndrome. Diabetes Care 2003;26:3180-1. https://doi.org/10.2337/diacare.26.11.3180
  3. Isomaa B, Henricsson M, Almgren P, Tuomi T, Taskinen MR, Groop L. The metabolic syndrome influences the risk of chronic complications in patients with type II diabetes. Diabetologia 2001;44:1148-54. https://doi.org/10.1007/s001250100615
  4. DeFronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 1991;14:173-94. https://doi.org/10.2337/diacare.14.3.173
  5. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003;112:1821-30.
  6. Apovian CM, Bigornia S, Mott M, Meyers MR, Ulloor J, Gagua M, McDonnell M, Hess D, Joseph L, Gokce N. Adipose macrophage infiltration is associated with insulin resistance and vascular endothelial dysfunction in obese subjects. Arterioscler Thromb Vasc Biol 2008;28:1654-9. https://doi.org/10.1161/ATVBAHA.108.170316
  7. Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes 2007;56:1010-3. https://doi.org/10.2337/db06-1656
  8. Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factoralpha in human obesity and insulin resistance. J Clin Invest 1995;95:2409-15. https://doi.org/10.1172/JCI117936
  9. McGarry JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 2002;51:7-18.
  10. Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 2006;7:85-96.
  11. Kirpichnikov D, McFarlane SI, Sowers JR. Metformin: an update. Ann Intern Med 2002;137:25-33. https://doi.org/10.7326/0003-4819-137-1-200207020-00009
  12. Bailey CJ. Treating insulin resistance in type 2 diabetes with metformin and thiazolidinediones. Diabetes Obes Metab 2005;7: 675-91. https://doi.org/10.1111/j.1463-1326.2005.00497.x
  13. Doggrell SA. Clinical trials with thiazolidinediones in subjects with Type 2 diabetes--is pioglitazone any different from rosiglitazone? Expert Opin Pharmacother 2008;9:405-20. https://doi.org/10.1517/14656566.9.3.405
  14. Amiel SA, Dixon T, Mann R, Jameson K. Hypoglycaemia in Type 2 diabetes. Diabet Med 2008;25:245-54.
  15. Hernandez AV, Usmani A, Rajamanickam A, Moheet A. Thiazolidinediones and risk of heart failure in patients with or at high risk of type 2 diabetes mellitus: a meta-analysis and meta-regression analysis of placebo-controlled randomized clinical trials. Am J Cardiovasc Drugs 2011;11:115-28. https://doi.org/10.2165/11587580-000000000-00000
  16. Babish JG, Pacioretty LM, Bland JS, Minich DM, Hu J, Tripp ML. Antidiabetic screening of commercial botanical products in 3T3-L1 adipocytes and db/db mice. J Med Food 2010;13:535-47. https://doi.org/10.1089/jmf.2009.0110
  17. Konda VR, Desai A, Darland G, Bland JS, Tripp ML. Rho iso-alpha acids from hops inhibit the GSK-3/NF-kappaB pathway and reduce inflammatory markers associated with bone and cartilage degradation. J Inflamm (Lond) 2009;6:26. https://doi.org/10.1186/1476-9255-6-26
  18. Lerman RH, Minich DM, Darland G, Lamb JJ, Schiltz B, Babish JG, Bland JS, Tripp ML. Enhancement of a modified Mediterranean- style, low glycemic load diet with specific phytochemicals improves cardiometabolic risk factors in subjects with metabolic syndrome and hypercholesterolemia in a randomized trial. Nutr Metab (Lond) 2008;5:29. https://doi.org/10.1186/1743-7075-5-29
  19. Loewe S. The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 1953;3:285-90.
  20. Yeh P, Kishony R. Networks from drug-drug surfaces. Mol Syst Biol 2007;3:85.
  21. Flick DA, Gifford GE. Comparison of in vitro cell cytotoxic assays for tumor necrosis factor. J Immunol Methods 1984;68:167-75. https://doi.org/10.1016/0022-1759(84)90147-9
  22. Leira F, Louzao MC, Vieites JM, Botana LM, Vieytes MR. Fluorescent microplate cell assay to measure uptake and metabolism of glucose in normal human lung fibroblasts. Toxicol In Vitro 2002;16:267-73. https://doi.org/10.1016/S0887-2333(02)00002-4
  23. Burr JF, Rowan CP, Jamnik VK, Riddell MC. The role of physical activity in type 2 diabetes prevention: physiological and practical perspectives. Phys Sportsmed 2010;38:72-82. https://doi.org/10.3810/psm.2010.04.1764
  24. Esposito K, Giugliano D. Mediterranean diet and the metabolic syndrome: the end of the beginning. Metab Syndr Relat Disord 2010;8:197-200. https://doi.org/10.1089/met.2009.0095
  25. Good CB. Polypharmacy in elderly patients with diabetes. Diabetes Spectr 2002;15:240-8. https://doi.org/10.2337/diaspect.15.4.240
  26. Turner RC, Cull CA, Frighi V, Holman RR. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA 1999;281:2005-12. https://doi.org/10.1001/jama.281.21.2005
  27. Minich DM, Lerman RH, Darland G, Babish JG, Pacioretty LM, Bland JS, Tripp ML. Hop and Acacia Phytochemicals Decreased Lipotoxicity in 3T3-L1 Adipocytes, db/db Mice, and Individuals with Metabolic Syndrome. J Nutr Metab 2010;2010. pii: 467316.
  28. Arner P. Not all fat is alike. Lancet 1998;351:1301-2. https://doi.org/10.1016/S0140-6736(05)79052-8
  29. Bergman RN, Kim SP, Hsu IR, Catalano KJ, Chiu JD, Kabir M, Richey JM, Ader M. Abdominal obesity: role in the pathophysiology of metabolic disease and cardiovascular risk. Am J Med 2007;120:S3-8; discussion S29-32.
  30. Kabir M, Catalano KJ, Ananthnarayan S, Kim SP, Van Citters GW, Dea MK, Bergman RN. Molecular evidence supporting the portal theory: a causative link between visceral adiposity and hepatic insulin resistance. Am J Physiol Endocrinol Metab 2005;288:E454-61. https://doi.org/10.1152/ajpendo.00203.2004
  31. Rytka JM, Wueest S, Schoenle EJ, Konrad D. The portal theory supported by venous drainage-selective fat transplantation. Diabetes 2011;60:56-63. https://doi.org/10.2337/db10-0697
  32. Bajaj M, Suraamornkul S, Romanelli A, Cline GW, Mandarino LJ, Shulman GI, DeFronzo RA. Effect of a sustained reduction in plasma free fatty acid concentration on intramuscular longchain fatty Acyl-CoAs and insulin action in type 2 diabetic patients. Diabetes 2005;54:3148-53. https://doi.org/10.2337/diabetes.54.11.3148
  33. Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest 2000;106:171-6. https://doi.org/10.1172/JCI10583
  34. Hotamisligil GS, Budavari A, Murray D, Spiegelman BM. Reduced tyrosine kinase activity of the insulin receptor in obesitydiabetes. Central role of tumor necrosis factor-alpha. J Clin Invest 1994;94:1543-9. https://doi.org/10.1172/JCI117495
  35. Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 1996;271:665-8. https://doi.org/10.1126/science.271.5249.665
  36. Standaert ML, Bandyopadhyay G, Kanoh Y, Sajan MP, Farese RV. Insulin and PIP3 activate PKC-zeta by mechanisms that are both dependent and independent of phosphorylation of activation loop (T410) and autophosphorylation (T560) sites. Biochemistry 2001;40:249-55. https://doi.org/10.1021/bi0018234

Cited by

  1. Bioactive Compounds of the PVPP Brewery Waste Stream and their Pharmacological Effects vol.17, pp.1, 2012, https://doi.org/10.2174/1570193x16666190723112623
  2. Moderate consumption of fermented alcoholic beverages diminishes diet-induced non-alcoholic fatty liver disease through mechanisms involving hepatic adiponectin signaling in mice vol.59, pp.2, 2012, https://doi.org/10.1007/s00394-019-01945-2