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Abstract 
 

A separable identity-based ring signature scheme has been constructed as a fundamental 

cryptographic primitive for protecting user privacy. Using the separability property, ring 
members can be selected from arbitrary domains, thereby, giving a signer a wide range of 

ways to control privacy. In this paper we propose a generic method to construct efficient 

identity-based ring signature schemes with various levels of separability. We first describe a 
method to efficiently construct an identity-based ring signature scheme for a single domain, in 

which a signer can select ring identities by choosing from identities defined only for the 

domain. Next, we present a generic method for linking ring signatures constructed for a single 

domain. Using this method, an identity-based ring signature scheme with a compact structure, 
supporting multiple arbitrary domains can be designed. We show that our method outperforms 

the best known schemes in terms of signature size and computational costs, and that the 

security model based on the separability of identity-based ring signatures, presented in this 
paper, is highly refined and effective by demonstrating the security of all of the proposed 

schemes, using a model with random oracles. 
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1. Introduction 

Enabling ubiquitous applications most often requires a pervasive computing environment in 

which large amounts of user information are collected and distributed. In such environment, 

the risk of mistakenly collecting sensitive user data or willfully misusing user data is inherent. 
Therefore, in order to benefit from the convenience of information technology without running 

the risks associated with the proliferation of information, it is important that security 

procedures such as message authentication and user privacy protection should be properly 

implemented and followed. This paper deals with designing a separable identity-based ring 
signature (IBRS) scheme, which may be used as a basic primitive for security procedures.  

The main purpose of a ring signature is to maintain an appropriate level of signer ambiguity 

and authenticate messages [1]. Using a list or a ring of arbitrary signers or ring members, a 
signer can generate a signature associated with the ring. A valid ring signature convinces the 

verifier that the signature has been generated by one of the members of the ring, without 

revealing the identity of the actual signer. Meanwhile, by applying identity-based 
cryptography to a ring signature scheme, one can simplify (certificate-based) public key 

management procedures. For example, an arbitrary public string such as an e-mail address or 

phone number may be used as a user’s public key [2][3]. This technique for simplification of 

public key management is particularly suitable for ring signature schemes which deal with 
multiple signers (from the same domain) at a time, as it does not require additional certificates 

to associate random public keys with a user.  

A domain can be defined using an identity-based signature (IBS) scheme. It should be noted 
that for a concrete implementation of an IBS scheme, specific public parameters and their 

corresponding master keys must be first generated and defined. A user obtains a private key 

for his or her identity, which is associated with the master private key. Then, according to the 

IBS scheme, signatures can be generated for message authentication and can be validated. 
Thus, a domain can be viewed as an instance of an IBS scheme, which is defined by a specific 

parameter. The same IBS scheme can have concrete instances that vary according to the 

master keys and parameters. On the other hand, in situations where two different IBS schemes 
are involved, the instances of the respective schemes will be always different. 

An IBRS scheme can be devised only for a specific single domain by extending the 

structure of a particular IBS scheme that works in that domain [4], [5]. Realistically, however, 
it must be assumed that there are various domains that are based on various cryptographic 

techniques and assumptions. In order to achieve an appropriate level of privacy, an IBRS 

scheme must, therefore, be capable of supporting multiple domains; for example, a signer 

should be able to pick ring members arbitrarily from across various domains. This property 
allowing the selection of ring members from different domains is known as separability. 

Using the separability property, a signer can have fine-grained control over his/her privacy. 

1.1 Our Contributions 

In this paper, we propose a modular method which enables the efficient construction of IBRS 

schemes with varying levels of separability. To do this, we first present a basic method for 
constructing an efficient IBRS scheme for a single domain. We explain this method through 

concrete examples based on an RSA cryptosystem and pairing map parameters. Next, we 

present a generic method for constructing an IBRS scheme for multiple domains, using IBRS 

schemes designed for a single domain. The resulting IBRS schemes afford a high level of 
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separability, allowing, for example, a signer to select the identities of ring members from 

across different domains, irrespective of the public parameters and signing methods. Our 
method, extending the technique of [6], offers a good structure for linking various ID-based 

signatures sequentially. We present a highly-refined security model for a separable IBRS 

scheme and prove that all the proposed IBRS schemes achieve strong anonymity and 

unforgeability in the model. To demonstrate the effectiveness of our approach, we compare 
the performance of our schemes with that of other known IBRS schemes, with respect to the 

size of signatures and computational costs. Due to their intrinsic property of dealing with 

multiple (possible) signers at the same time, reducing the size of a signature is one of the 
critical efficiency concerns for IBRS schemes. We show that the signature size of our 

separable IBRS schemes is shorter than those of other known schemes with the same degree of 

separability. 

1.2 Related Works 

Since the first introduction of the notion of an identity-based cryptosystem by [2], many IBS 

schemes have been proposed using various cryptographic techniques based on RSA, discrete 
logarithm, or bilinear map parameters [3], [7][8][9][10]. [1], meanwhile, presented the 

concept of a non-ID-based ring signature scheme, proposing an RSA-based ring signature 

scheme. The first explicit construction of an IBRS scheme was presented by [11], and this 
scheme was without a formal security proof. Various other IBRS schemes have been 

suggested, subsequently, for improving efficiency or refining security models [4][12][13]. 

Some extensions of ring structures have been also presented to support a general access 
structure [4][14]. However, most IBRS schemes have thus far been constructed for single 

domains. Several works, including [6][13], and [15], have focused on a modular approach to 

combine signatures with different structures. The results by [6] and [15] provide novel 

methods to link non-ID-based signatures in a sequential or parallel manner. The result by [13] 
directly applied these link methods to ID-based signature schemes to achieve strong 

separability. Under the approach proposed in this study, as will be shown later in detail, 

signatures are significantly shorter in length, than those under the previously proposed 
approaches.  

1.3 Organization 

The rest of this paper is organized as follows: In section II, we present a security model for a 

separable IBRS scheme. In section III, we describe our IBRS scheme for a single domain and 

provide two instances of its use. In section IV, we present a generic method to construct an 

IBRS scheme for multiple domains, and prove the security of the IBRS scheme constructed 
using this method. In section V, we compare the size of our signatures to those of other best 

known signatures. Finally, we offer a conclusion in section VI. 

2. Security Model 

We formally define a security notion for a separable IBRS scheme. Let λ denote the fixed 

parameter for the size of user identities.  

The notion of separability was introduced by [16] to quantify the amount of common 
system parameters for a signature. Levels of separability can be defined according to whether 

a pair of independent keys is used in a signature scheme or completely different signature 

schemes are in use. For example, when all parties must use the same signature scheme and 
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public system parameters, the level of separability is considered weak, while it is considered 

strong when parties may use potentially different signature schemes, and the signature is based 
on roughly the minimum security parameter of the signature schemes involved.  

Next, we formally define a separable IBRS scheme П, which consists of a tuple of 
polynomial-time algorithms, SetUp, Extract, Sign, and Vrfy. 

 

- SetUp is a probabilistic polynomial-time (PPT) algorithm that, on input of security 
parameter κ, outputs a tuple of public system parameters π = (π1,…, πα) and its 

corresponding master secret key msk = (msk1,…, mskα), where α is a polynomial in κ.  

- Extract is a PPT algorithm that, on input of mskj, πj, and ID ∈ {0,1}
λ
, outputs a signing 

key skj,ID. This is denoted by skj,ID ← Extract (mskj, πj, ID).  

- Sign is a PPT algorithm that, on input of a private key ski,ID, a ring RID = {(π'1, 

ID1),…,(π'n, IDn)} for π'j∈ π and IDj= (IDj,1,…, IDj,t[j]), and a message m ∈ {0,1}
*
, 

outputs σ. Assume that i is selected in {1,…,n} uniformly at random, πi∈ {π'1,…,π'n} 

and ID∈ IDi. This is denoted by σ ← Sign (ski,ID, RID, m). 

- Vrfy is a deterministic polynomial-time algorithm that, on input of π, a ring RID, 

message m, and signature σ, returns 1 (valid) or 0 (invalid). This is denoted by b ← Vrfy 

(π, σ, RID, m). 

 

In the above description, we assume that a signature scheme is implicitly defined or described 
in its corresponding public system parameter. Given that separability can be measured by α, 

when α = 1, it represents the weakest level of separability; that is, a ring can be constructed by 
picking only users in the same domain. The greater the value of α, the greater the degree of 

separability. However, this is only a quantitatively measurement of separability and does not 

reflect qualitative separability. For example, the signature schemes corresponding to two 
different domain parameters π'i and π'j may be the same in some cases. To take this factor into 

consideration, we can measure separability using additional indices to indicate signature 

schemes in public system parameters π'i. If the two system parameters π'i and π'j are defined for 

a signature scheme, we can assume that there is no increase in separability. 

For security, an IBRS scheme must achieve correctness and two basic security notions, 
unforgeability and anonymity. 

 

Correctness. We say that an IBRS scheme is correct if the following conditions hold: 1 ← 

Vrfy (π, σ, RID, m) for a message m ∈  {0,1}
*
, a positive integer n ∈ N, and RID 

={(π'1,ID1),…,(π'n,IDn) | π'i∈ π, IDi=(IDi,1,…, IDi,t[i])} where (msk, π) ← Setup (1
κ
); ski,ID ← 

Extract (mski, π'i, ID∈ IDi); and σ ← Sign (ski,ID, RID, m) for all i = 1,...,n. 

 

Unforgeability. An IBRS scheme П is said to be existentially unforgeable under adaptively 

chosen message and identity (CMIA) attacks if no PPT adversary A has a non-negligible 
advantage in the following game with a challenger C. 

(1) C runs SetUp to obtain π = (π1,…,πα) and msk = (msk1,…, mskα). The public parameters π 
is given to A.  

(2) The adversary A adaptively makes polynomially many queries as follows. 

- Extract query (πj, ID): C returns skj,ID ← Extract (mskj, πj, ID). 
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- Sign query ((π'β, ID∈IDβ), RID ={(π'1, ID1),…,(π'n, IDn)}, m) : C returns σ ← Sign 

(skβ,ID, RID, m) where sk β,ID ← Extract (mskβ, π'β, ID). 

(3) A outputs RID
*
={(π

*
1,ID

*
1),…,(π

*
n,ID

*
n)}, m

*
, and σ

*
.  

 

A succeeds in the game if σ
*
 on (m

*
, RID

*
) is valid, i.e., 1 ← Vrfy (π, σ

*
, RID

*
, m

*
) and for all 

j=1,...,n, Extract (msk
*

j, π
*

j, ID
*∈ ID

*
j) and Sign ((π

*
j, ID

*∈ ID
*

j), RID
*
, m

*
) queries have 

never been issued. A successful event is denoted by Sucforg. The EUF-advantage of A for П is 

defined by Adv
IBRS, EUF- CMIA

(П,A) = Pr[Sucforg].  

 

Anonymity - An IBRS scheme П is said to be anonymous if no PPT adversary A has a 
non-negligible advantage in the following game with a challenger C. 

(1) C runs SetUp to obtain π = (π1,…,πα) and msk. The public parameters π is given to A.  

(2) The adversary A adaptively makes polynomially many queries as follows. 

- Extract query (πj, ID): C returns skj,ID ← Extract (mskj, πj, ID). 

- Sign query ((π'β, ID∈IDβ), RID={(π'1, ID1),…,(π'n, IDn)}, m): C returns σ ← Sign 

(skβ,ID, RID, m). 

(3) The adversary A outputs a message m
*
, two distinct tuples of a public parameter and an 

identity, ((π
*

0, ID
*

0), (π
*

1, ID
*

1)), and a ring RID
*
 for which (π

*
0, ID

*
0), (π

*
1, ID

*
1) ∈ RID

*
, and 

π
*

0, π
*

1∈ π. 

(4) The challenger C picks a random bit b∈{0,1} and gives A with the signature on ID=ID
*

b, 

σ' ← Sign(skb,ID, RID
*
, m

*
). 

(5) A makes Extract and Sign queries adaptively.  

(6) Finally, the adversary outputs bit b'. 

 

A succeeds in the game if b = b'. The successful event is denoted by Sucanon. The 
ANON-advantage of A for П is defined by Adv

IBRS, Anon-CMIA
(П,A) = Pr[Sucanon]. 

The above definition considers anonymity against full key exposure; that is, an adversary 
can obtain the secret keys of all honest users including even users in the ring. As noted by [12], 

this definition is polynomial-time equivalent to the case in which an adversary should be 
unable to guess the real signer among r, randomly chosen ring members, with probability 

better than 1/r + ε for a negligible ε. 

3. IBRS Schemes for a Single Domain 

In this section, we present an efficient method of extending IBS schemes into IBRS schemes 

for a single domain. Throughout the paper, we denote by  and || bitwise-eXclusive OR and 
concatenation operations, respectively. Meanwhile, we denote by Φ(N) Euler's totient function. 

We define  i=1,…,k ci = c1
 … ck for L-bit strings ci ∈{0,1}

L
.  

Intuitively, the main idea of our construction is to aggregate random commitments for other 

fake signers into a single random commitment using a common public system parameter. 
Since a real signer can compute a secret share in advance, he/she can generate a correct 

response using his/her signing key, the secret share, and a random number. The response can 
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be used to cancel exactly the identity of the real signer in the verification equation without 

changing the aggregated commitment. In the process, the identity of the signer is not exposed 
thanks to the computational symmetry of the verification equation. Our method is as follows 

where the choice of domains is not considered, as the scheme is constructed for one particular 

domain: 

 

- SetUp. Given a security parameter κ, output a master secret key msk and its 
corresponding public system parameters π. Assume that π includes a cryptographic hash 

function H:{0,1}
*
 → {0,1}

L
. 

- Extract. Given an identity ID, return its corresponding private key skID.  

- Sign. Given π, a signing key skID, message m, and a ring of identities RID=(π, 

(ID1,…,IDt)) including ID=IDβ for random β∈ {1,…,t}, pick random ci ∈ {0,1}
L
 for i 

=1,...,t, (i ≠ β), and some randomness Rβ and compute a simulated commitment B. This is 

denoted by B ← Sim(π, RID, Rβ, (c1,...,cβ-1,cβ+1,...,ct)). Compute a challenge w ← H(RID, 

m, B). Also compute cβ = w (  i=1,…,t, (i ≠ β) ci) and a response V using share cβ, 

randomness Rβ, and signing key skID. Output σ = (c1,...,ct,V).  

- Vrfy. Given π, a ring RID, message m, and σ = (c1,...,ct,V), compute B' ← VComp(π, 

RID, c1,...,ct,V) and check if c1
 … ct = H(RID, m, B'). If the equality holds, then 

output 1; otherwise output 0. 

 

For correctness, it is required that Sim (π, RID, Rβ, (c1,...,cβ-1, cβ+1,..., ct) = VComp (π, RID, 
c1,...,ct, V).  

To explain our method through concrete examples, we chose two IBRS schemes extending 
the RSA-based IBS [7] and (modified) pairing-based IBS [8] schemes, respectively. The first 

RSA-based IBRS scheme is as follows: 

 

- SetUp. Given a security parameter κ, generate two random λ0-bit primes p1, p2 and 

compute N = p1p2. Let L ≤ λ0. Select e ∈ {0,1}
L
 such that gcd(Φ(N),e) = 1. Let d = e

 -1
 

mod N. Generate cryptographic hash functions Hid : {0,1}
λ
 → ZN

*
 and H: {0,1}

*
 → 

{0,1}
L
. Output a master secret key msk = (p1,p2) and a public system parameter π = (N, e, 

Hid, H).  

 

- Extract. Given an identity ID, compute Q = Hid(ID) and skID= Q
d
 mod N, and return skID. 

If skID
e
 = Hid(ID) mod N , then skID is a valid key for the ID. 

 

- Sign. Given π, a signing key skID, message m, and a ring RID = (π, (ID1,…,IDt)), 

including ID = IDβ, select random r ∈ ZN
*
, ci ∈ {0,1}

L
 for i=1,...,t, (i ≠ β) and compute 

Qi = Hid(IDi), B=r
e
 Пi=1,…,t,(i≠β) Qi

ci mod N, w = H(RID, m, B), cβ = w ( i=1,…,t,( i ≠ β) ci), 

V=r · (skID)
- cβ mod N. Output σ = (c1,...,ct,V).  
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- Vrfy. Given π, a ring RID, message m, and σ = (c1,...,ct,V), check if c1  … ct = H 

(RID, m, V
e
 · Пi=1,…,t Qi

ci mod N) where Qi = Hid (IDi). If the equality holds, then output 1; 

otherwise output 0. 

 

It is easy to see that the above IBRS scheme is correct, because c1
 … ct = w = H (RID, m, B) 

= H (RID, m, r
e 
Пi=1,…,t (i≠β) Qi

ci mod N) = H (RID, m, ((Qβ
d
)

cβ·r)
e
 Qβ

cβ Пi=1,…,t (i≠β) Qi
ci mod N) = H 

(RID, m, V
e
·Пi=1,…,t Qi

ci mod N). 

 

Theorem 1. Let Hid and H be random hash functions. The above RSA-based IBRS scheme is 
anonymous against full key exposure.  

Proof. A simulator sets up all parameters correctly as defined in the proposed IBRS scheme. 
All private keys skID = Hid (ID)

d
 mod N are given to an adversary. A simulator can provide a 

perfect simulation with the adversary because it knows all private keys. As in the definition of 
anonymity in section II, assume that an adversary outputs two distinct identities ID1 and ID2 

for the proposed IBRS scheme. Since the scheme is constructed for a single domain we do not 

consider the choice of domains.  

For random b∈{0,1}, assume that signature σ = (c0, c1, V) is generated according to the 

signing method of the proposed IBRS scheme. That is, for a given signing key skID,b = Hid 

(IDb)
d
, message m, and ring of identities RID = (π, (ID0, ID1), select random r ∈ ZN

*
 and cz ∈ 

{0,1}
L
 for z (≠b)∈{0,1} and then compute QID,z = Hid(IDz), B = r

e
 Qz 

cz mod N, w = H(RID, m, 

B), cb = w cz, V = r·(skID,b)
 -cb 

mod N. Note that c0  c1 = H (RID, m, V
e
·Q0

c0·Q1
c1). The 

verification equation shows the symmetry of computation with respect to identity. In fact, V = 

r·(skID,b)
-cb can be equivalently represented by V = r'·(skID,z)

-cz, where r' = r·(skID,z)
cz·(skID,b)

-cb 
, 

while maintaining the validity of the signature. Also, r' is uniformly distributed over ZN
*
 

because r is uniformly distributed over ZN
*
, and r' is represented by a linear combination of 

fixed parameters skID,z, skID,b, cz, and cb. This means that V can be generated equally by a key 

for ID0 or ID1, though it was generated by the key for a specific identity. 

Therefore, for given (m, RID, σ), the probability that a specific IDi in RID is the identity of 

the real singer is 1/2.                                                                                                               □ 

 

Theorem 2. Let Hid and H be random hash functions. The above RSA-based IBRS scheme is 
existentially unforgeable under CMIA attacks under the hardness of the RSA problem. 

Proof. We show that the security of the proposed IBRS scheme is reduced to the hardness of 
the RSA problem. We want to build an algorithm A that uses a forger F against our IBRS 

scheme to solve the RSA problem. Suppose that a random RSA instance (N, e, y) is given to A. 
Its goal is to compute x such that x

e 
= y mod N.  

A gives system parameters π = (N, e) to F. A simulates oracle queries as follows: Suppose F 
makes at most qid and qH queries to Hid and H oracles, respectively. For simplicity, we also 

assume that hash-queries are never repeated.  

- Hid query. First, A chooses θ ∈ {1,…, qid} uniformly at random. On an Hid(IDi) query, if 

it is the θ
th
 Hid query, let IDi = ID

*
. A returns y. Otherwise, A picks a random D∈ ZN

*
 and 

returns D
e
 mod N.  
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- H query. A obviously responds as follows: On a query, A picks random w∈{0,1}
L
 and 

returns w.  

- Extract query. On an Extract(ID) query, if ID ≠ ID
*
 then A returns skID = D for Hid(ID) = 

D
e
 mod N. Otherwise, A outputs FAIL and aborts the simulation.  

- Sign query. On a Sign (IDx, RID=(π, (ID1,…,IDt)), m) query, if IDx ≠ ID
*
, then A returns 

σ after correctly generating a signature σ with the signing key for IDx. Otherwise, A 

chooses c1,...,ct∈{0,1}
L
 and V∈ ZN

*
 uniformly at random. Then, A computes Y = V

e
· 

Пi=1,…,t Hid(IDi)
ci mod N. Define h = c1+…+ct as the value of H(RID, m, Y). A returns σ = 

(c1,...,ct,V). 

 

Eventually, F outputs a valid ring signature σ
*
 = (c'1,...,c's,V') on (RID

*
, m

*
), where RID

* 
= (π, 

(ID
*

1,...,ID
*

s)). Assume that for all j = 1,...,s, Extract (ID
*

j) and Sign (ID
*

j, RID
*
, m

*
) queries 

have never been issued. Let Y' = V' 
e
· Пi=1,…,s Hid(ID

*
i)

c'i (mod N) and h' = H(RID
*
, m

*
, Y').  

By using a standard rewinding technique, we can non-negligibly obtain another forged 
signature σ

**
 = (c''1,...,c''s,V'') satisfying the following condition: h' ≠ h'',where Y'' = V'' 

e
. 

Пi=1,…,s Hid(ID
*

i)
c''i (mod N) and h'' = H(RID

*
, m

*
, Y''). For some β∈ {1,...,s}, c'β ≠ c''β and c'j = 

c''j for j = 1,...,s (j ≠ β).  

If IDβ = ID
*
 then A can compute Z = V'(V'')

-1
 = x

ξ
 for ξ = -c'β+c''β. As already noted in the 

proof of Theorem 1, due to the symmetry of the verification equation, V' = r·(skID*)
-c'β for some 

r ∈ ZN
*
. In addition, by the condition of the rewinding technique, we have V''= r·(skID*)

-c''β. 

Thus, we can have Z= V' (V'')
-1

 = r·(skID*)
-c'β(r·(skID*)

-c''β)
-1 

= x
ξ
, where ξ = - c'β + c''β. Using a 

similar method, A can compute another Z' = V''·(V'''')
-1 

= x
ξ'
, where ξ' = - c''β + c''''β. Next, A 

computes integers τ and τ' such that τ ξ + τ'ξ' = 1 using the extended Euclidean algorithm. 

Finally, A outputs T = Z 
τ 
· (Z') 

τ'
 = x

ξ
 
τ 
· x

ξ'
 
τ'
= x

ξ
 
τ+ ξ'

 
τ' 

= x = y
d
 mod N as a solution to the given 

RSA problem.  

It is well-known that the probability that two random numbers are relatively prime is 6/π
2
 ≈ 

0.6 [17]. Hence A can highly compute τ and τ'. It is easy to see that the simulation that A makes 

is perfect unless an abortion occurs. The adversary A does not abort the simulation if A at least 
correctly guesses the value of θ, i.e, IDθ =ID

*
=IDβ. Since ID

*
 is uniformly selected from the 

viewpoint of the forger, the probability of the event is at least 1/qid. Therefore, if the forger F 

who can break our IBRS scheme exists, then a poly-time solver to the RSA problem in G1 

non-negligibly exists.                                                                                                              □ 

 

The second pairing-based IBRS scheme is described as follows.  

 

- SetUp. Given a security parameter κ, generate an admissible bilinear map e: G1ⅹG2 → 

GT, a random generator P of G1. Pick a random s ∈ Zq
*
 and compute Ppub = sP. Let π = 

(e, G1, G2, GT, q, P, Ppub, Hid, H), where Hid: {0,1}
λ
 → G1 and H: {0,1}

*
 → Zq

*
 are 

cryptographic hash functions. Output a master secret key msk=s and public system 

parameters π. 
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- Extract. Given an identity ID, compute Q = Hid(ID) and return the private key skID = sQ 

∈ G1.  

 

- Sign. Given π, a signing key skID, message m, and a ring of identities RID = (π, 

(ID1,…,IDt)), including ID = IDβ, select random r ∈ Zq
*
 and ci ∈ {0,1}

L
 for i = 1,...,t, (i 

≠ β). Then, compute Qi = Hid(IDi), B = rQβ + ∑i=1,…,t (i≠β) ciQi∈ G1, w = H(RID, m, 

e(B,Ppub)), cβ = w   ( i=1,…,t, ( i ≠ β) ci), V = (-cβ+r)·skID ∈ G1. Output σ = (c1,...,ct,V). 

 

- Vrfy. Given π, a ring RID, message m, and σ = (c1,...,ct,V), compute D' = 

e(V,P)·e(∑i=1,…,t ciQi, Ppub) and check if c1
 … ct = H (RID, m, D'), where Qi = Hid(IDi). 

If the equality holds, then output 1; otherwise output 0. 

 

It is easy to see that the above IBRS scheme is correct because e(B,Ppub) = e(rQβ+∑i=1,…,t(i≠β) 

ciQi, Ppub) = e((r-cβ)Qβ +∑i=1,…,t ciQi,Ppub) = e(V,P) · e (∑i=1,…,t ci Qi, Ppub) . 

 

Theorem 3. Let Hid and H be random hash functions. The above pairing-based IBRS scheme 
is unconditionally anonymous against full key exposure.  

Proof. A simulator sets up all parameters correctly as defined in the proposed IBRS scheme. 

All private keys skID = sHid(ID) ∈ G1 are given to the adversary. A simulator can provide a 

perfect simulation to the adversary because it knows all of the private keys. As in the definition 
of anonymity in section II, assume that the adversary outputs two distinct identities, ID1 and 

ID2, for the proposed IBRS scheme. Since the scheme is constructed for a single domain, we 

do not consider the choice of domains.  

For a random b∈{0,1}, assume that a signature σ = (c0, c1, V) is generated according to the 

signing method of the proposed IBRS scheme. That is, given a signing key skID,b = sHid(IDb), 

message m, and a ring RID = (π, (ID0, ID1), select random r ∈ Zq
*
 and cz ∈ {0,1}

L
 and then 

compute Qz = Hid(IDz), B = r Qb + cz Qz ∈ G1, w = H(RID, m, e(B, Ppub)), cb = w cz, V = 

(-cb+r)·skID,b ∈ G1. 

By the definition of the verification algorithm, it holds that c0  c1 = H (RID, m, 
e(V,P)·e(c0Q0+c1Q1,Ppub)). The verification equation has computational symmetry with 

respect to an identity. In fact, V = (- cb + r) · skID,b can be equivalently represented by V = (- cz 

+ r')·skID,z, where r' = cz + (r - cb)·α and skID,b = α · skID,z for some α∈ Zq
*
. Note that V = (- cz + 

r')·skID,z = (- cz + cz + (r - cb)·α)·skID,z = (r - cb)·skID,b. Here, r' is uniformly distributed over G1 
because r is uniformly distributed over G1, and r' is represented by a linear combination of 

fixed parameters α, cz and cb. This means that V can be generated equally by a key for ID1 or 

ID2, although it was generated by the key for a specific identity. 

Therefore, for given (m, RID, σ), the probability that a specific IDi in RID is the identity of the 

real singer is 1/2.                                                                                                                      □ 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 10, Oct 2012                                       2701 

 

Theorem 4. Let Hid and H be random hash functions. The above pairing-based IBRS scheme 
is existentially unforgeable under CMIA attacks under the hardness of the computational DH 
problem.  

Proof. We want to build an algorithm A that uses a forger F against our pairing-based IBRS 
scheme to solve the CDH problem. Suppose that a random CDH instance (P, A = αP, B = βP) 

is given to A. Its goal is to compute αβP ∈ G1. A sets Ppub = A (= αP) and gives system 

parameters π = (e, G1, G2, GT, q, P, Ppub) to F. A simulates the oracle queries as follows: 

Suppose F makes at most qid and qH queries to Hid and H oracles, respectively. For simplicity, 

we also assume that hash-queries are never repeated. 

- Hid query. First, A chooses θ ∈ {1,…,qid} uniformly at random. On an Hid(ID) query, 

if it is the θ
th
 Hid query, let ID = ID

*
. A returns B = βP; otherwise, A picks a random z∈ Zq

*
 

and returns zP.  

- H query. A obviously responds as follows: On a query, A picks random w ∈ {0,1}
L
 

and returns w.  

- Extract query. On an Extract (ID) query, if ID ≠ ID
*
, then A returns skID = zPpub using 

z with Hid (ID) = zP. Otherwise, A outputs FAIL and aborts the simulation.  

- Sign query. On a Sign (IDx, RID =(π, (ID1,…,IDt)), m) query, if IDx ≠ ID
*
, then A 

returns σ after correctly generating a signature σ with the signing key for IDx. Otherwise, A 

chooses c1,...,ct ∈ Zq
*
 and V ∈ G1 uniformly at random. Then, A computes Y = 

e(V,P)·e(∑i=1,…,t ciHid(IDi),Ppub). Define h = c1+…+ct as the value of H(RID, m, Y). A returns 

σ = (c1,...,ct,V). 

 

Eventually, F outputs a valid ring signature σ
*
 = (c'1,...,c's,V') on (RID

*
, m

*
), where RID

* 
= (π, 

(ID
*

1,...,ID
*

s)). Assume that for any ID∈{ID
*

1,...,ID
*

s}, Extract(ID) and Sign(ID, RID
*
, m

*
) 

queries have never been issued. Let Y' = e(V',P)·e(∑i=1,…,s c'i Hid(ID
*

i), Ppub) and h' = H(RID
*
, 

m
*
, Y').  

By using a rewinding technique, we can non-negligibly obtain another forged signature σ
**

 
= (c''1,...,c''s,V'') satisfying the following condition: h' ≠ h'' where Y'' = e(V'',P)·e(∑i=1,…,s c''i 

Hid(ID
*

i), Ppub) and h'' = H(RID
*
, m

*
, Y''). For some β ∈ {1,...,s}, c'β ≠ c''β and c'j = c''j for j = 

1,...,s (j ≠ β).  

Note that if IDβ = ID
*
, then the algorithm A can compute Z = (-c'β + c''β)

-1
(V' - V'') = skID* = 

αβP as a solution to the given CDH instance. As already noted in the proof of Theorem 3, due 

to the symmetry of the verification equation, V' = (-c'β + r)·sk ID* for some r ∈ Zq
*
. In addition, 

by the condition of the rewinding technique, we can have V'' = (-c''β +r)·skID*. Thus, we have Z 

= (- c'β + c''β)
-1

(V' - V'') = (- c'β + c''β)
-1

[(- c'β + r)·skID* - (- c''β + r) ·skID*] = skID* = αHid(ID
*
) = 

αβP.  

It is easy to see that the simulation that A makes is perfect unless an abortion occurs. The 
adversary A does not abort the simulation if A correctly guesses at least the value θ, i.e, IDθ = 

ID
* 
=IDβ. Since ID

*
 is uniformly selected from the viewpoint of the forger, the probability of 

the event is at least 1/qid. Therefore, if a forger F who can break our IBRS scheme exists, then 

a poly-time solver to the CDH problem in G1 non-negligibly exists.                                    □ 
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4. A Generic Construction for IBRS Schemes for Multiple Domains 

We present a generic method to construct an IBRS scheme for multiple domains from IBRS 

schemes for a single domain. The resulting IBRS schemes achieve strong separability; a signer 
can, for example, select identities from across different master-key domains, regardless of 

public parameters or signing methods. Our method basically extends the technique of [6] for 

linking signatures with different structures. It should be noted that the technique has a good 
structure for accommodating various proof-of-knowledge schemes sequentially. However, the 

technique cannot be directly applied to IBRS schemes for single domains because it was 

originally devised to link non-identity-based signatures. Also, this will necessitate the 
simultaneous treatment of multiple challenges for generating an IBRS . For our purposes, we 

modify the technique using a simple (t,t) secret sharing method.  
1. Our Extension Method  

Let us describe our extension method more concretely. Let π = (π1,...,πα) and Σi = (Extracti, 

Signi, Vrfyi) be an IBRS scheme for single domains, which can be generically constructed, as 

shown in the previous section. Assume that πj includes a cryptographic hash function Hj: 

{0,1}
*→{0,1}

Lj. Here, Σi is assumed to be defined with each domain parameter πi. We assume 

that each IDi,j is associated with a master-key domain, πi, and is included in IDi = (IDi,1,…, 

IDi,t[i]) for a positive integer t[i]. We also assume that a real signer with an identity, IDβ,γ∈ IDβ, 

in domain πβ obtains a secret signing key skβ,γ from the Extractβ algorithm. 

 

- Sign. Given π, a secret signing key skβ,γ, message m, and a ring 

RID={(π'1,ID1),…,(π'n,IDn)| π'j∈ π} for random β ∈ {1,…,n} and γ ∈ {1,…,t[β]}, 

perform the following:  

 Initialization. First, pick random cβ,i ∈ {0,1}
Lβ for i=1,...,t[β], (i≠γ) and randomness Rβ, 

and compute a simulated commitment Bβ ← Sim(πβ, RID, Rβ, 

(cβ,1,...,cβ,γ-1,cβ,γ+1,...,cβ,t[β])). Compute a challenge wβ+1 ← H β+1(RID, m, Bβ). 

 Simulation. For each j=β+1,...,n,1,...,β-1, ① pick random cj,i ∈ {0,1}
Lj for i = 2,...,t[j] 

and then compute the challenge share cj,1 = wj  ( i=2,…,t[j] cj,i), ② pick a random 

Vj and compute Bj ← VComp (πj, RID, cj,1,...,cj,t[j], Vj), and ③ compute wj+1 ← 

Hj+1(RID, m, Bj). 

 Real Proof. Compute cβ,γ = wβ  ( j=1,…,t[j] (j≠γ) cβ,j) and response Vβ using the signing 

key, skβ, γ, Rβ, and cβ,γ.  

Output signature σ = {(cj,1,...,cj,t[j],Vj)| 1 ≤ j ≤ n} for positive integers t[j].   
 

- Vrfy. Given π, a message m, ring RID, and a signature σ = {(cj,1,...,cj,t[j],Vj)| 1 ≤ j ≤ n}, 

for each j = 1,...,n, compute B'j ← VComp(πj, RID, cj,1,...,cj,t[j], Vj) and then check if 


i=1,…, t[j+1] cj+1,i = Hj+1(RID, m, B'j). If all the equalities hold then output 1; otherwise, 

output 0. 

 

Assume that the given underlying IBRS schemes used for the domain are correct, that is, for γ 

∈ {1,...,t[j]}, Sim(πβ, RID, Rβ,γ, (cβ,1,...,cβ,γ-1,cβ,γ+1,...,cβ,t[β]) = VComp(πβ, RID, cβ,1,...,cβ,t[β], Vβ). 

Using the assumption, we can show as follows that the extended IBRS scheme is correct: For j 
(≠β), by construction, wj is computed in the signing and verifying algorithms using the same 

value Bj. For j=β, by correctness of a given underlying IBRS scheme, Sim(πj, RID, R j,γ, 
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(cj,1,...,cj,γ-1, cj,γ+1,...,cj,t[j])) = Bj = VComp (πj, RID, cj,1,...,cj,t[j], Vj), and so the same hash value wj 

is computed from Bj in the signing and verifying algorithms. 
Next, we show that if the underlying IBRS schemes for single domains are secure, the 

extended scheme for multiple domains is secure in the random oracle.  

 

Theorem 5. The extended IBRS scheme is anonymous against full key exposure if the 
underlying IBRS schemes used for the domain are anonymous against full key exposure in the 

random oracle model.  

Proof. First, consider a case in which two identities, say IDθ,1 and IDθ,2, are selected in a 
domain. In this case, it is easy to see that the anonymity of the extended scheme is reduced to 

that of the underlying scheme used for the domain. Hence, the extended scheme is anonymous 

against full key exposure because, by assumption, the underlying scheme is anonymous 
against full key exposure.  

Second, consider a case in which two identities are selected in two different domains, πθ and πω. 

Denote the identities by IDθ,1 and IDω,1, respectively. For simplicity, we assume that RID = 

{(πθ, IDθ,1), (πω, IDω,1)} is a ring that the adversary selects. Consider two distributions of 
signatures, Dθ and Dω, where Dθ (resp. Dω) is a distribution of signatures that a real signer in 

the domain πθ (resp. πω) generates. Consider a signature σ ={(c1,1,V1), (c2,1,V2)}∈ Dθ. By the 

construction, c1,1 = H1(RID, m, VComp(πω, RID, c2,1, V2)) and c2,1 = H2(RID, m, Sim(πθ, RID, 

R1)). Because of the correctness of the underlying IBRS scheme, we also have Sim (πθ, RID, 

R1)= VComp(πθ, RID, c1,1, V1), and so c2,1 = H2(RID, m, VComp(πθ, RID, c1,1, V1)). Since the 

random hash model is considered in the proof, c1,1 and c2,1 are uniformly distributed. 

Next, consider another case, that is, a signature σ' = {(c'1,1,V'1), (c'2,1,V'2)} ∈ Dω. We have c'1,1 

= H1(RID, m, Sim(πω, RID, R'2)) and c'2,1 = H2(RID, m, VComp(πθ, RID, c'1,1, V'1)). Because of 
the correctness of the underlying IBRS scheme, we have Sim (πω, RID, R'2) = VComp(πω, RID, 

c'2,1, V'2), and thus c'1,1 = H1(RID, m, VComp(πω, RID, c'2,1, V'2)). Since the random hash model 

is considered in the proof, c'1,1 and c'2,1 are uniformly distributed. Furthermore, since the 

underlying IBRS schemes for a domain are anonymous against full key exposure, the 
distributions of c1,1 = H1(RID, m, VComp(πω, RID, c2,1, V2)) and c'1,1 = H1(RID, m, VComp(πω, 

RID, c'2,1, V'2)) are (computationally) indistinguishable under full key exposure attacks. A 

similar reasoning can be applied to c2,1 = H2(RID, m, VComp(πθ, RID, c1,1, V1)) and c'2,1 = 

H2(RID, m, VComp(πθ, RID, c'1,1, V'1)), that is, c2,1 = H2(RID, m, VComp(πθ, RID, c1,1, V1)) and 

c'2,1 = H2(RID, m, VComp(πθ, RID, c'1,1, V'1)) are (computationally) indistinguishable under 

full key exposure attacks. Thus, we have (c1,1, c2,1) and (c'1,1, c'2,1) being (computationally) 
indistinguishable under full key exposure attacks. Therefore, the extended IBRS scheme is 

anonymous against full key exposure.                                                                                     □ 

 
Theorem 6. The extended IBRS scheme is existentially unforgeable in the random oracle 

model. 

Proof. The proof of the theorem mainly relies on a similar rewinding technique of [13] and 
[18][19][20]. We can simulate random hash functions, in a typical fashion, by selecting an 

element uniformly. Further, since the extended IBRS scheme follows a so-called 

commitment-challenge-response paradigm, and since we can control the simulation of the 

random hash functions, we can obviously simulate a signing oracle for the extended IBRS 
scheme by selecting a challenge as a hash output in advance. Assume that a forger generates a 

forged signature σ = {(cj,1,...,cj,t[j],Vj) | 1 ≤ j ≤ k}. Let hj = Hj(RID, m, VComp(πj-1, RID, 

cj-1,1,...,cj-1,t [j-1] ,Vj-1)). By using a rewinding technique, we can non-negligibly obtain another 
signature σ' = {(c'j,1,...,c'j,t[j],V'j)| 1 ≤ j ≤ k} satisfying the following condition: Let h'j = Hj(RID, 
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m, VComp (πj-1, RID, c'j-1,1,...,c'j-1,t [j-1], V'j-1)). For some β ∈ {1,…,k}, and for j = 1,...,k (j ≠ β), 

Vj = V'j , hj = h'j, and Vβ ≠ V'β , hβ ≠ h'β. For i = 1,...,t[β] (i ≠ γ), cβ,i = c'β,i and cβ,γ ≠ c'β,γ. Using a 

knowledge extractor with Vβ, V'β, cβ,γ, and c'β,γ, an adversary can break an underlying IBRS 

scheme for single domains. This contradicts the unforgeability of the underlying IBRS 

schemes. Hence, the extended IBRS scheme is existentially unforgeable.                             □ 

 

2. A Concrete Instance for Multiple Domains  
 

To further the understanding of our construction method for strongly separable IBRS schemes, 

let us now turn to an example using the IBRS schemes for a domain, which were suggested in 

the previous section. Let π = (π1, π2), where π1 and π2 are public system parameters for the 
RSA-based IBRS scheme and the pairing-based IBRS scheme, respectively, i.e., π1 = (N, e, 

H1,id, H1) and π2=(e, G1, G2, GT, q, P, Ppub, H2, id, H2).  

For convenience, we denote the schemes by Σ1 and Σ2, respectively. Assume that a real signer 

has a signing key sk2,γ ∈ G1 for the second domain with π2.  

 

- Sign. Given π, a signing key sk2,γ∈  G1, message m, and a ring RID = {(π1, 

(ID1,1,…,ID1,t')), (π2, (ID2,1,…,ID2,t'')}, do the following: 

 Initialization. Pick random c''i ∈ {0,1}
L''

 for i = 1,...,t'', (i ≠ γ), and random r2 ∈ Zq
*
, 

and compute simulated commitment B2 ← e(r2Q2,γ + ∑i=1,…,t'' (i≠γ) c''iQ2,i, Ppub) and 

challenge w1 ← H1(RID, m, B2), where Q2,i= H2, id (ID2,i).  

 Simulation. For i = 2,...,t', select V1 ∈ ZN
*
, c'i ∈ Zq

*
 at random, and compute c'1 = 

w1
 ( i=2,…,t' c'i), B1 ← V1

e
 · Пi=1,…,t' Q1,i

c'i, and w2 ← H2(RID, m, B1), where Q1,i= 

H1, id (ID1,i).  

 Real Proof. Compute c'' γ = w2  ( i=2,…,t'' (i ≠ γ) c''i) and V2 = (r2 - c''γ) sk2,γ.  

Output signature σ = {(c'1,...,c't', V1), (c''1,...,c''t'', V2)}. 

 

- Vrfy. Given π, a message m, and σ = {(c'1,...,c't', V1), (c''1,...,c''t'', V2)}, compute B1
'
 ←

V1
e
·Пi=1,…t' Q1,i

c'i and B
'
2 ← e(V2,P) · e(∑i=1,…t'' c''iQ2,i, Ppub). Check if  i=1,…,t'' c''i = 

H2(RID, m, B1
'
) and  i=1,…,t' c'i = H1(RID, m, B

'
2). If the equality holds, then output 1; 

otherwise, output 0. 

 

Similarly, a real signer with the signing key sk1,η for the first domain π1 is able to generate a 
ring signature of which the ring consists of ring members chosen from the two different 

domains.  

5. Performance Comparison 

In this section, we present a performance comparison between our schemes and some of the 

best-known IBRS schemes with respect to the size of signatures and computational costs. For 
convenience we denote by IBRS-1 and IBRS-2 our RSA-based IBRS scheme and our 

pairing-based IBRS scheme, respectively. 

In this analysis, we define some notations: n is the number of all ring members in a ring of a 
given signature. Dnum is the number of all different domains in a ring of a given signature. 

Lhash is the bit-length of a given hash function to generate parameters cj. Exp is a modulo 

exponentiation under a RSA modulus. S is a scalar multiplication on G1 , and P is a pairing 
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operation. LN and LG1 are the bit-length of an RSA modulus N and the shortest group G1 

defined for a pairing map, respectively.  
First, we compare our IBRS schemes for single domains with the IBRS schemes by [4] and 

[5] [See Table 1.].  

 

Table 1. Performance Comparison. 

 Sig-Length (bit) 
Computational Costs 

Param. Security 
Sign Vrify 

[5] (1+n)·LN 2n·Exp (n+1)·Exp  RSA RSA Problem 

Our IBRS-1 n·Lhash+LN (n+2)·Exp  (n+1)·Exp RSA RSA Problem 

[4] (1+n)·LG1 (n+1)·S n·S+2·P Pairing CDH Problem 

Our IBRS-2 n·Lhash+LG1 (n+1)·S+1·P n·S+2·P Pairing CDH Problem 

 

Currently, Lhash = 160 and LN = 1024 are considered practically secure. Meanwhile, to achieve 

the same security level as an 1024-bit RSA system, the bit-length of group G1 for a pairing 
map must be 171 bits. Note that this assumption can be obtained by using MNT curves [21]. 

Let LG1 = 171. As summarized in Table 1, the signature length of our IBRS-1 is n·Lhash + LN  
and that of the RSA-based IBRS scheme [5] is (n+1)·LN. (n·Lhash+LN)/(n+1) · LN becomes 

asymptotically close to w = Lhash /LN, as n, the size of a ring, increases. Thus, the ratio w = 

160/1024 = 0.156 for Lhash = 160 and LN = 1024. In this case, our IBRS-1 is 84% more efficient, 
compared to the scheme of [5]. Using a similar analysis, we can show that our IBRS-2 is 7% 

more efficient, compared to the pairing-based IBRS scheme [4]. As can be noted in Table 1, 

our IBRS-2 is comparable to the scheme of [4], and our IBRS-1outperforms the scheme of [5] 
in terms of signing and verifying costs.  

Next, we compare our generic IBRS scheme for multiple domains with the separable IBRS 

scheme of [13]. Let |OURS| and |AHR| denote the signature size of [13] and that of our scheme, 
respectively. We can summarize the signature sizes of the two schemes as follows: 

|OURS| = Σi=1,…,Dnum (LV
i 
+ Σj=1,…,n

i
 Lhash

j
), 

|AHR|= Σi=1,…,Dnum Σj=1,…,n
i 
(LV

j
+ Lhash

j
), 

where LV
i
 denotes the size of each variable Vj in signature {(cj,1,...,cj,t[j],Vj) | 1 ≤ j ≤ k}. It is easy 

to see that |OURS| ≤ |AHR| because |OURS| - |AHR| = Σi=1,…,Dnum LV
i
 - Σi=1,…,Dnum Σj=1,…,n

i
 LV

j
 ≤ 0 

for positive integers LV
k
. The equality only holds when ni =1 for all i; that is, only one signer is 

chosen from each domain. 

5. Conclusion 

We have proposed generic methods to construct IBRS schemes with varying levels of 
separability. We first presented a method for constructing an IBRS for a single domain. We 

then presented a generic method for constructing IBRS schemes for multiple domains by 

extending the IBRS schemes for a single domain. We showed that our method results in short 
signatures. We also demonstrated that the schemes presented are secure in the random oracle 

model. An interesting open problem would be to construct a secure IBRS scheme for multiple 

domains without a random oracle.  
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