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Abstract 
 

Recent studies have indicated that a significant improvement in wireless video throughput can 

be achieved by Cross Layer Design with Side-information (CLDS) protocols. In this paper, we 

derive the operational rate of a CLDS protocol operating over a realistic wireless channel. 

Then, a Rate-Distortion (R-D) empirical model for above-capacity Scalable Video Coding 
(SVC) is deduced to estimate the loss of video quality incurred under inaccurate rate 

estimation scenarios. Finally, we develop a novel Unequal Error Protection (UEP) scheme 

which leverages the characteristics of LDPC codes to reduce the distortion of video quality in 
case of typically-observed burst wireless errors. The efficacy of the proposed rate adaptation 

architecture over conventional protocols is demonstrated by realistic video simulations using 

actual IEEE 802.11b wireless traces. 
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1. Introduction 

In many wireless environments, deteriorated link conditions cause frequent bit-corruptions. 

These corrupted packets cause checksum failures and packet drops at wireless receivers. To 

reduce packet losses at the receivers, many recent efforts utilize cross-layer protocols that do 
not discard corrupted packets [1][2][3][4][5][6][7][8][9]. Consequently, two classes of 

wireless multimedia protocols have emerged [2]: (i) Cross-Layer-Design (CLD) protocols 

which relay corrupted packets to higher layer for further processing; (ii) conventional (CON) 

protocols which drop any packet that has one or more residue errors. Prior studies have shown 
that a significant improvement in wireless video throughput can be achieved by CLD 

[2][3][4][5]. Furthermore, it has also been exhibited that side information, which are already 

available from IEEE 802.11 compliant packets, is quite valuable for providing channel state 
information and modeling of the underlying (effective) video channel. This side information 

includes Signal to Silence Ratio (SSR) indicators and MAC-layer checksum, both of which 

can be used as parameters for channel estimation [8]. This form of CLD protocols that utilize 
side information have been referred to as Cross-Layer-Design with Side information (CLDS) 

protocols in prior literature [1][2], [8][9], [12]. 

Despite the demonstrated benefits of CLDS, full utilization of CLDS-based video streaming 

with appropriate rate adaptation remains unexplored. An important missing link in deploying a 
rate adaptive CLDS architecture is the ability to accurately estimate and predict the wireless 

channel capacity in real-time. Capacity estimation for wireless channels is a challenging 

problem because wireless link conditions fluctuate frequently and significantly due to 
interference, fading, multi-path effects, and mobility.  

In this paper, we develop three novel schemes to realize an Optimal Rate Prediction 

Architecture under CLDS protocols ( CLDSORPA ) in a practical rate adaptation multimedia 

application. The developed three schemes include: 1) Operational rate that incorporates the 

performance drop of a practical channel code which is inferior to an ideal code due to finite 

length and other design limitations. 2) A Rate-Distortion (R-D) empirical model for 

above-capacity video. This model provides a PSNR value of video bitstream that is coded at 

over-estimated rates (or above capacity); and hence, we can complete CLDSORPA  for a realistic 

environment. 3) An Unequal Error Protection (UEP) scheme which leverages the 

characteristics of Low Density Parity Check (LDPC) codes to efficiently reduce the 
degradation of video quality in case of bursty error on a wireless channel. Our trace-driven 

wireless video simulation results show that CLDSORPA  provides outstanding rate prediction 

performance in a realistic environment.  
The rest of this paper is organized as follows. Section 2 describes our wireless trace 

collection setup and then performs some preliminary analysis on the collected data. Section 3 

completes CLDSORPA  by motivating and developing the proposed schemes. Section 4 and 5 

respectively evaluate the performance of the proposed framework and summarize key 

conclusions of this work.  
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Fig. 1. The architecture of the proposed rate adaptation 

 

Fig. 2. Topologies used for wireless trace collection 

2. Wireless Traces Collection and Analysis 

2.1 Data Collection 

For this study, we collected error traces simultaneously on five 802.11b wireless receivers. 

The receivers were located at different places in a research lab, while the access point (AP) 
was placed in a room across a hallway from the receivers to simulate a realistic 

classroom/office setting, as shown in Fig. 1 and Fig. 2. In this setup, the receivers used the 

DLink DWL-650 WLAN PCMCIA card based on the Prism2 chipset together with the 

linux-wlan-ng-0.1.14-pre3 driver on a PC with Linux RedHat 7.1 OS. The receivers’ MAC 
layer device drivers were modified to capture corrupted packets. Each experiment comprised 

of one million packets with a payload of 1,000 bytes each, i.e., each trace has approximately 1 

GB of data, which corresponds to approximately 4 and half hours of error trace collection 
when packets are transmitted at 500 Kbps. 
A wired sender was used to send multicast packets with a predetermined payload on the 
wireless LAN; multicasting disabled MAC layer retransmissions. In addition to a packet’s 
header and payload information, we logged signal to silence ratio (SSR) for each packet. The 
sender used different transmission rates ranging from 500 Kbps to 1 Mbps for each experiment. 
At the physical layer, the auto rate selection feature of the AP was disabled and for each 
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experiment the AP was forced to transmit at a fixed data rate. Each trace collection experiment 
was repeated multiple times at 2, 5.5 and 11 Mbps physical layer data rates and at different 
times of day. Due to brevity, we skip the detailed study of BER behavior at different SSR 
values and refer the reader to Section 2 in [11]. 

2.2 Average Statistics of the Traces 

Table 1 provides some statistics of the traces collected for this study. Since the physical layer 

robustness decreases with an increase in data rate, the average packet error rate increases with 

an increase in the physical layer data rate. In particular, the average packet error rate increases 

from approximately 10% at 5.5 Mbps to almost 40% at 11 Mbps. Since the wireless receivers 
were placed at different locations, the receivers experienced different packet error rates. The 

overall minimum and maximum error rates in Table 1 outline that the receivers under 

consideration were experiencing both good and bad link conditions. 
The average, minimum and maximum SSR values are also shown in Table 1. Note that the 

minimum SSR value is zero at all three data rates. From a prior analysis [8], [11], we know this 

SSR range is of interest for the protocols considered in this paper. 
The relationship between SSR values and the channel error rate is also shown in Table 1. It 

is easily observed from the second column of Table 2 that packet error rates increase 
drastically with a decrease in SSR values. In particular, the packet error rate increases by 
approximately 18% as the SSR decrease from 26 dB to 20 dB. Similarly, there is a packet error 
rate increase of about 41% between SSRs 13 and 20. Interested readers are referred to [11] for 
a more detailed discussion of BER and SSR behavior of the channel. 

Table 1. Statistics of traces used in this study 

Phy. data rate 
( Mbps) 

Avg. PER Min. 

PER 

Max. 

PER 

Avg. 

SSR 

(dB) 

Min. 

SSR 

(dB) 

Max. 

SSR 

(dB) 

2 5.97% 0.75% 14.31% 14.75 0 34 

5.5 9.79% 0.61% 22.74% 15.27 0 32 

11 39.5% 10.99% 77.83% 16.51 0 35 

Table 2. Error statistics for varying SSR values at 11 Mbps 

SSR 

(dB) 

Average Packet-Error 

Rate 

BER of all packets 

(error-free & corrupted) 

BER of 

corrupted packets 

5 0.701 0.0253 0.0361 

13 0.6248 0.0157 0.0251 

20 0.2166 0.0048 0.0223 

26 0.0384 0.0023 0.0591 

3. Prediction Based Rate Adaptation 

In this section, first CLDSORPA  is formulated to be deployed in a practical video streaming 
application by exploiting the three main contributions of this paper: operational rate, an R-D 
empirical model for above-capacity SVC and an LDPC-based UEP scheme. 

3.1 A Rate Adaptation Architecture for Wireless SVC 

The architecture of a multimedia streaming application depends heavily on a network on 
which it operates. Therefore, it is essential to define our proposed architecture for rate 
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adaptation. The proposed architecture consists of a server and a client that runs over a wireless 
network. In the given architecture, both a server and a client are designed to support source and 

channel rate adaptation. Fig. 1 describes such architecture. The client supports CLDS 

protocols that leverage residue-error-process and side information, which can be relayed to an 

Forward Error Correction (FEC) decoder for soft-decoding [14], and to estimate the current 

channel capacity, 
~

nC , for a block of packets (or time-window for m packets). The current 

channel capacity, which is estimated by the channel estimator with the entropy of the residue 

error process, ( )H
b
 , is then transmitted to the server as feedback for rate adaptation. Using the 

feedback,
~

nC , the rate tuner at the server predicts operationally optimal source and channel 

rates,
*

nR , for the next block of multimedia packets to be transmitted. Note that for FEC 

encoding, different redundancy parameters such as i and P , are used for different types of 

video frames to protect more on more important information. The details are described in 
Section 3.5. 

For this study, we consider the following configurations of video and channel codes: (i) a 

video test sequence (foreman) is encoded using Scalable Video Coding (SVC) [21] to easily 

adapt source bitrates by dropping packets rather than re-encoding for different rates. 
SVC is the extension of ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC standard and its 

characteristics is to provide spatial, temporal and quality scalability with a video bitstream. A 

SVC bitstream can consist of base and one or more enhancement layer for spatial, temporal or 
quality aspect [21][22]. Higher quality video can be achieved by decoding both base and 

enhancement layers whereas lower quality of video can be experienced only with base layer by 

dropping of packets due to a bandwidth limitation. It is a strong point of SVC that one 
bitstream can be dynamically utilized to adjust to network bandwidth change compared to 

others that only coarse scalability can be provided. To that end, SVC can be efficiently 

employed in especially wireless networks where link conditions fluctuate frequently and 

significantly due to interference, fading, multi-path effects, and mobility. 
The encoding configuration is as follows: two-layered spatial scalability and three-layered 

Fine Granularity Scalability (FGS); 30 frame-per-second (fps) only with I and P frames; and 

Group of Pictures (GOP) of 64. Note that the above encoding configurations were used to 
reduce the computational complexity in wireless mobile terminals, which are the main focus 

of our study. (ii) LDPC code [19] is used as a FEC code. Note that since the LDPC code, which 

is used in this study, does not achieve channel capacity, we have to consider the operational 

rate that is strictly less than channel capacity for reliable communication. 
In addition, the time-window for the experiment is selected such that the variation in 

link-quality from one time window to the next is minimized. Allan Variance is a measure 

which allows us to methodically determine such an optimal size of the window [17], and it is 
computed as 

2 2

1

1

1
( ) ( ( ) ( ) )

2( 1)

k

n n

n

AVAR C C
k

  



 

                                             (1) 

 

where 2( )AVAR   is the Allan Variance as a function of averaging time,  ; nC  

1

1
1 ( )

m

b i

i

H
m




 
  
 

 is the average channel capacity of the measurement in time window n; and k  

is the total number of time windows. 
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For all traces that we have considered, the Allan Variance of BER is minimal for a 
time-window size of 5 seconds as shown in Fig. 3. Hence, in this study we use the time 
window with a size of 5 seconds. 
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Fig. 3. Allan Variance as function of time window 

3.2 Optimal Rate Prediction 

 Channel Estimation and Prediction 

As shown in Table 2, the BER of the channel changes with respect to the channel SSR. In 
general, we observed a non-linear relationship between SSR and BER. Here, we employ a 
BSC model, which utilizes each SSR of a packet to estimate the BER over a given block of 
packets. While we acknowledge that the BSC model is somewhat simplistic for the present 
problem, we observed that this simple model can provide quite accurate BER prediction; and 
more importantly it provides a conservative estimate for the channel capacity due to the lack of 
a memory model in the channel. (The impact of channel memory on the proposed scheme is 
the subject of an ongoing work and is beyond the scope of this paper.). We partitioned the 
collected traces into training and test data. Next, with training data we define bins over the 
entire SSR range and determine the average BER for each bin. Note that we regard the average 
BER as the crossover probability in Binary Symmetric Channel (BSC) model [8], [9], [10]. 
Hence, a packet renders a BER estimate according to its SSR. During the testing phase we use 
these estimates of BER to determine channel capacity over the time window (or the number of 
packets, m for a given transmission rate) that is defined in Eq. (1). The channel capacities are 
calculated as follows:   

~ ~

1

1
1 ( )

CLDS m

n b i

i

C H
m




                                                              (2) 

~

1

1
1 1

CON m

n i

i

C Z PER
m 

                                                           (3) 

where i  represents the channel BER estimate for packet i, iZ is a binary variable representing 

the status of the checksum of packet i ( 1iZ   if checksum fails). Eq. (2) is the capacity 

estimate CLDS  computed based on the average of the instantaneous per-packet error-process 

entropy in a block of m packets, and Eq. (3) is the estimate of channel capacity under CON 

protocols. 
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Fig. 4. Temporal correlation in channel capacity for 11 Mbps traces  (traces from 1 to 5 collected with 

transmission rate at 500, 6 to 7 at 750, 7 to 10 at 900, and 11 to 14 at 1024 Kbps). 

Prior studies have indicated that bit-errors have high temporal correlations, especially in 

802.11b wireless networks [10][11][12][13]. In Fig. 4, the correlation coefficients of a number 

of traces are shown and calculated on the basis of the channel capacity process. The correlation 
coefficient is computed as  

 

     

   
1 1

1var var

n n n n

n n

E C C E C E C

C C
  







, 

(4) 

where  [ ]E   and var[ ]  are the sample mean and the sample variance functions. Fig. 4 clearly 

exhibits the existence of temporal correlation that is non-negligible in all traces, and it is quite 
significant in most traces. This correlation can be taken advantage of to predict the channel 

capacity for the next time-window. We exploit this correlation by using the channel capacity 

estimate of the current packet as an estimate for the next packet’s channel capacity: 

^ ~

1n nC C 
, 

(5) 

which deduces the channel prediction error
1
,  e. 

Although we have considered other optimum predictors (e.g., Yule-Walker [16]), our 
simulation results demonstrate that the above simplistic prediction in conjunction with the 

optimal rate tuning (described below) provides significant improvement over conventional 

protocols. Furthermore, the prediction performance of Eq. (5) is very similar to the optimum 
Yule-Walker predictor [1]. Consequently, we focus the remainder of this paper (in the context 

of the proposed rate prediction architecture) on the predictor determined by Eq. (5) due to its 

minimal complexity. 

 Optimal Rate Tuning 

                                                        

1 1 1
ˆ ˆ ˆ ˆ

n n n n n n ne C C C C C C        
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It is essential that we need to adhere to a rate that is strictly below channel capacity to avoid 

excessive packet drops. Therefore, if the predicted channel capacity is directly employed, 
there is a good likelihood that the predicted capacity (as a random variable) may exceed the 

actual channel capacity. A natural workaround to this problem is to make the predicted 

capacity more conservative by subtracting a small offset   from the channel capacity 

prediction, ˆ
nC . Such a strategy can, however, result in considerable long-run bandwidth 

wastage, and therefore judicious selection of the   parameter is extremely important. We 

propose the following formula to find the “optimal” value of   (leading in turn to the optimal 

video rate) such that the average video peak signal-to-noise ratio (PSNR) over some period of 

time (or over a set of blocks of packets) is maximized: 
 
 

* ^ ^

1

1
argmax ( ( )) (( ) )

N

n n n n

n

I C C Q C T
N 

 
         

 


                                             (6) 

and  
* ^ *

n nnR C    
 

where nC  and  ˆ
nC  are the actual and predicted channel capacities, and ( )I  , ( )Q  and 

T respectively represent an Indicator function2 , an R-D (video quality) function and a transmit 

rate3. Thus the above objective function assumes a rather simple binary quality-indicator that 
forces the estimated PSNR value to zero when the rate exceeds the capacity. Note that based 

on the present objective function defined in Eq. (6), the “optimal” rate can be computed only 

when the overall statistics and the actual channel capacity values are available. Since the 

optimal rate determined using Eq. (6) is based on the entire trace, it cannot be utilized in 
real-world applications. We resolve this issue by observing that the probability distribution of 

the channel prediction error process, e, is very close to a Gaussian distribution, 2(0, )eN  as 

shown in Fig. 5. 
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Fig. 5. The channel prediction error process (e) resembles the probability distribution of Gaussian 

                                                        

2 
0

( )
1

if is not satisfied
I

otherwise


 





 

3 
pkts in pkt size

T where is time window






   (bits per second), and hence 

*

R T  is the effective transmission rate 

which is actually transmitted for the underlying channel. 
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Furthermore, we take into account the normal distribution, which is well known to have the 
highest entropy, and hence provides the most conservative estimate. Based on the Gaussian 

assumption for the prediction error, this leads to an expression that replaces the indicator 

function with the normal distribution function. The predicted channel capacity can then be 

optimally tuned by finding a rate *

nR  to maximize  
nPSNR

 
as 

 

 

 

*

(0 1)

(0 1)

arg max ( ) Pr{ }

' Pr{ }

    arg max ( ) Pr{ }

' Pr{ }

n n

n n

n n n n
R R

n n n n

n n n
R R

n n n n

R Q R T C R

Q R C T C R

Q R T e

Q R C T e

 

 

   

    

    

     

                                                        (7) 

^

^

^

^

1 2

2

1(0 1) 2

2

1
exp

22
arg max ( )

1
exp

22

n

n n

nn n

n

C

n

ee
R C

n
CR R

n

ee
C

e
de

Q R T

e
de









 



 
 
 

 

 
 
 





^

^

^

^

2

2

1 2

2

1
exp

22
'( )

1
exp

22

n n

n

n

n

R C

n

ee
C

n n
C

n

ee
C

e
de

Q R C

e
de













 
 
 

  

 
 
 





 

 

where ( )Q   is the R-D (quality) function of the video sequence (as a function of total number 

of bits used to code the sequence); ( )Q  is the quality function of the video sequence for rates 

above capacity (or video quality distortion function); and  represents the probabilities of 

rate below capacity (the first term in Eq. (7)) and of rate exceeding capacity (the second term 
in Eq. (7)) based on the distribution of channel prediction error process. Thus, the predicted 

channel capacity can be fully utilized and the video quality can be optimized when the product 

of the R-D function and the probability distribution of the channel prediction error process is 
maximized.  

3.3 Operational Rate 

It is important to notice that a rate in Eq. (7) is based on the ideal channel code that achieves 
channel capacity. When a realistic channel code is employed we have to consider the 

operational  rate4, opR  which is strictly less than channel capacity for a reliable communication. 

Therefore, the rate in Eq. (7) should be adjusted in conjunction with a specific channel code. 
We formulate the operational rate as: 
 

1 ( )opR H     , 
1

1
( )H




                                                  (8) 

where   is the actual channel BER and   is the redundancy parameter. Note that the channel 

capacity for the considered BSC channel can be estimated as 1 ( )bC H   [20]. For reliable 

communication (i.e. distortion free communication) the operational rate has to satisfy opR C . 

While it is theoretically possible to satisfy this constraint, in practice the performance of a code 

                                                        
4 The operational rate in this study is equivalent to the achievable channel coding rate, 

log( )M

n
for  ,log( )n M channel 

code, which embodies inferior performance of a practical code to an ideal code. 
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is inferior to the theoretical predictions because of finite length and other design limitations. 

We capture this performance drop by introducing the parameter . Thus, we use a stricter 

constraint (1 ) ( )opR H C    , where a hypothetically optimal code can be represented by  

1   [12]. 
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Fig. 6. (a) The R-D (quality) function of the SVC test (foreman) video sequence, and (b) the empirical 
model for the video quality distortion. 

As explained above, the value of   plays a critical role in rate selection. Therefore, in this 

study, we first deduce a suitable value for this parameter. Analytical deduction of   requires 

us to consider finite length analysis of LDPC codes. This is a challenging and reasonably open 
area of research. In this study, we provide a practical solution by empirically evaluating the 

value of  . For this purpose, we conducted a comprehensive set of experiments with LDPC 

channel codes and SVC. Ten experiments in randomly selected time windows for each trace 

were conducted with a SVC bitstream of foreman consisting of 1200 packets.  We observed 

that for 2.3   most of the video packets with size of more than 1000 bits are decoded 

successfully as shown in Fig. 7. Henceforth, we use this empirically deduced value for all 

experimental evaluation. Note that in this study the operational rate is the maximum 
achievable rate for the given channel code and for the underlying channel. Thus, when the 

operational rate is employed in Eq. (7), the predicted channel capacity can be operationally 

and optimally tuned as 
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3.4 An Empirical Model of Video Quality Distortion 

It is well-known that a channel coding rate that exceeds the capacity leads to unreliable 

communication and increased distortion. The precise increase in distortion depends on a 

number of factors, such as: i) the specific video content, ii) the error concealment/resilience 

and robustness of a particular source codec, and most importantly iii) the difference between 
the overestimated rate and the actual channel capacity. Commercially available video systems 

are complex and consist of a number of sub-parts. Hence, it is difficult (if not impossible) to 

deduce a closed form analytical expression that can precisely capture the impact of factor iii) 
on the video quality. Consequently, we resort to an empirical model that can be used in Eq. (9) 

to express the video quality for normalized rates5 

To deduce the empirical model, we conduct the following measurement procedure:  

 
1. Compute the operational channel capacity6 of the underlying channel.  

2. Extract the test SVC bit-stream at the operational channel capacity and compute the PSNR 

of the stream. 

3. Encode the extracted bit-stream with the LDPC encoder and transmit it over the underlying 

channel. 

4. Decode the bit-stream packets using the LDPC decoder and the SVC decoder (with error 

concealment7).  

5. Compute the normalized PSNR8  from the successfully decoded packets.  

6. Repeat 3-5 with an increased rate and for four different transmission rates 
 

Note that we conducted this experiment in the same environment setting (LDPC channel codes 

and foreman SVC bitstream) that we used for derivation of the redundancy parameter in 

section 3.3. From a comprehensive set of measurements, it can be observed that the 
normalized PSNR decreases as a function of normalized rates [Fig. 6(b)]. We derive the 

empirical model of distortion of video quality for rates over the channel capacity as: 

( ) , 0 0.12bf x ax c x   
. 

(10) 

where x is a normalized rate over the capacity. 

                                                        
5 Normalized rate is the rate difference between the over-estimated rate and the operational channel capacity, which 

normalized by the over-estimated rate, 
opR C

R


. 

6 The operational channel capacity is the maximum achievable rate for the given channel code and for the 
underlying channel 
7 A lost frame was replaced with the previous frame. 

8 ' / '(0)
opR C

Q Q
R
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  
 
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Through curve fitting, we found  21.18 10 ,a    2.148b  and 0.9898c   [Fig.6 (b)]. Note that 

these values are specially designated for the foreman video sequence. At this point, we have 
developed a simple and generic model which takes only a rate as input. Due to its simplicity, in 

some cases the model’s predicted distortion is not very accurate. However, the magnitude of 

the prediction error is not significant and (as desired) the model provides somewhat 

conservative estimates. Consequently, we leverage this empirical video quality distortion 

model, ( )Q   in Eq. (9), to optimally select the source and channel rate, i.e., the channel coding 

rate [20]. 
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Fig. 7. For the LDPC, the probability of successful decoding depends on the parameter   and the size 

of packet. 

3.5 Unequal Error Protection 

As described in the previous section, for a rate-adaptive video, it is essential to accurately 

estimate/predict the channel capacity for reliable delivery of video content. However, it is 

always a challenging task to accurately estimate/predict the channel capacity, especially in 
wireless environments which incur significant channel impairments. More specifically, bursty 

channel error on a wireless medium leads to severe corruption of packets, in turn introducing 

considerable distortion in video quality. We note that in the case of bursty errors it is possible 

to reduce the distortion in video quality by employing an Unequal Error Protection (UEP) 
scheme. To this end, in this section we develop an UEP scheme which utilizes the 

characteristics of scalable video content and LDPC code. 

It is well-known that a video content can be encoded with Intra (I), Predicted (P) or 
Bidirectional (B) frames. Each of those frames renders different amount of source information 

(per frame) and hence the impact on the video quality introduced by each of frame type differs 

dramatically. Therefore, the overall distortion in video content can be reduced by offering 
higher error protection to I frames (by providing more redundant bits on packets containing I 

frames) which are considered the most important frames. In addition, it is well-known that the 

error correction capability of an LDPC code depends on the packet size; a large-sized packet 

has a better chance of successful decoding than a smaller packet for a given underlying 
channel as shown in Fig. 7. We can observe from Fig. 7 that the probability of successful 

decoding is a function of both the size of packet and redundancy parameter   (described in 
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Section 3.3). 
Consequently, when a packet containing I frame is encoded with   that provides the 

probability of success decoding equal to 1 (i.e., 2.1   for a packet size of 8 Kbits or more), it 

is highly likely that the packet will be decoded successfully at the receiver. Therefore, we 

channel encode I frame packets with a redundancy parameters that leads to success rate equal 

to 1. Note that without a UEP scheme the same redundancy parameter ( 1.8  ) is used for 

every packet and the total number of redundant bits can be defined (or specified) as 
 

    1 1 1

( ) ( ) ( )
n k n

I I P

i i i P i

i i i k

H L H L H L     
   

                                               (11) 

where
*

( ) 1
op

H R    ;  i  represents the redundancy parameter for I frame packets; P  

represents the redundancy parameter for P frame packets; iL  represents the length of the i  th 

packet; I

iL represents the length of  the i th packet containing I frames; and  P

iL denotes the 

length of the i th packet containing P frames. It should be noted that in Section 3.3, we define 

1.8   where almost every packet can be successfully decoded. However, when bursty errors 

are introduced, redundant bits with 1.8  are insufficient for successful decoding. 

The redundancy parameter for P frame packets can be simply computed as  
 

1 1

1

.

N k
I I

i i i

i i
P N
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i k

L L

L

 

  

 




 


                                                         (12) 

4. Experiment Results And Analysis 

We now compare the performance of the proposed rate prediction architecture, CLDSORPA , 

with CONORPA . For CONORPA , we first use checksums for a time-window to find the PER, 

which is in turn used to estimate the channel capacity for the time-window. As explained 
earlier, this channel capacity estimate is then used as the predicted capacity for the next 

time-window. For CONORPA , the operationally optimal rate tuning scheme is also employed in 

the same way as the CLDSORPA  schemes. 

To compare the performance of each architecture, experiments in this study were conducted as 

follows: 

1. Estimate the operational channel capacities of k time windows in a trace by using the BER 

estimate of each packet and Eqs. (2) and (3).  

2. Predict the operationally optimal rates of k time windows using Eq. (9). Note that ( )Q  is 

incorporated to find the rates 

3. Calculate the average PSNR values over all time windows of a trace as follows 
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(13) 

where ( )I   is an Indication function; 
* op

nR  is the predicted rate computed by using Eq. (9); op

nC  

is the operational channel capacity; and k is the number of time windows in a trace. 

4. Repeat 1-3 for different error traces 

Note that for the predicted rate below the operational channel capacity, the video quality is 

calculated by using the first and second terms of Eq. () for the predicted rates exceeding the 

operational channel capacity.  

As the experiment results of our previous study [1] indicated, CLDSORPA performs better in 

capacity prediction than CONORPA  with practical SVC and LDPC code [Fig. 8, Fig. 9].  

Table 3. Operational rate prediction performance before rate tuning 

 

Phy 

(Mbps) 

Xmit 

Rate 

(Kbps) 

Operational 

Channel  
(PSNR-dB) 

CLDSORPA  

(dB) 

CONORPA  

(dB) 

 

2 

500 28.96 26.76 24.11 

750 31.02 29.94 27.99 

900 31.93 30.51 27.98 

1024 32.52 31.43 30.07 

Avg. 31.11 24.41 27.54 

 

5.5 

500 29.00 21.07 25.32 

750 30.88 23.39 27.10 

900 31.90 24.78 27.23 

1024 32.47 25.38 27.88 

Avg. 31.06 23.66 26.88 

 

11 

500 29.00 26.98 25.45 

750 30.88 29.01 30.19 

900 31.78 27.01 24.07 

1024 31.99 27.51 16.55 

Avg. 30.91 27.63 24.06 

 

However, it can be also observed that accurate prediction alone does not necessarily imply 

better overall rate adaptation as shown in Table 3. This is due to over-predicted channel 

capacities which cause significant packet drops and considerable degradation of video quality. 

We resolve this problem by employing rate tuning scheme which provides significant 

performance improvement in terms of average PSNR values over all time windows of a trace 

as shown in Table 4. 

Table 4 shows that rate tuning scheme significantly improves the overall performances of 

CLDSORPA  as well as CONORPA . For CONORPA , it should be noted that the optimal rate tuning 

degrades the overall performance at 11 Mbps. This is because CONORPA  predicts the channel 

capacity rather conservatively at 11 Mbps due to the fact that large number of packet drops are 

often introduced. Hence, the predictions of CONORPA  are consistently and considerably lower 

than the operational channel capacity. As a result, the performance of CONORPA  at 11 Mbps is 

slightly degraded. 
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Table 4. Operational rate prediction performance after rate tuning 

 

Phy 

(Mbps) 

Xmit 

Rate 

(Kbps) 

Operational 

Channel  
(PSNR-dB) 

CLDSORPA  

(dB) 

CONORPA  

(dB) 

 

2 

500 28.96 27.67 27.81 

750 31.02 30.74 30.78 

900 31.93 31.51 31.25 

1024 32.52 32.43 32.31 

Avg. 31.11 30.59 30.53 

 

5.5 

500 29.00 27.92 28.23 

750 30.88 29.39 29.84 

900 31.90 30.78 29.98 

1024 32.47 32.38 30.95 

Avg. 31.06 30.11 29.75 

 

11 

500 29.00 27.59 25.22 

750 30.88 29.53 30.18 

900 31.78 30.67 22.73 

1024 31.99 30.12 15.01 

Avg. 30.91 29.47 23.28 

 

Now, we extend our analysis on the performance of CLDSORPA  in more realistic environment 

by embodying practical SVC, LDPC code, and an actual IEEE 802.11b channel (using the 
traces that we collected). The simulation procedure with the video quality functions of the 

pre-encoded SVC bit-stream shown in Fig. 6-(a) is as follows: 

1. Predict the optimal rates, 
* op

nR and
*

1

op

nR  , for two randomly chosen consecutive 

time-windows of a randomly chosen trace using Eq. (9). 

2. Extract a SVC bitstream based on the rates from 1. 

3. Encode the extracted bitstream packets based on the rates from 1 with the LDPC encoder 

and transmit the FEC-encoded packets over the underlying channel. 

4. Decode the transmitted packets with LDPC and SVC decoder (with error concealment).  

5. Repeat 1-4 for different traces with different transmission rates. 

This simulation results are shown in Table 5.  

Table 5. Performance of 
CLDSORPA  in conjunction with practical SVC and LDPC code 

Phy 

Xmit 

Rate 

(Kbps) 

Time Window Index 

(Optimal Rates) 

(
* *

1,
op op

n nR R  ) 

Extracted  

Bitstream 

PSNR(dB) 

Bitrate(Kbps) 

Decoded 

Bitstream 

PSNR(dB) 

11 

500 

437, 438 

(0.774,0.744) 

29.87 

(379.7) 
29.20 

1703, 1704 

(0.877,0.886) 

30.28 

(440.3) 
29.56 

750 

227, 228 

(0.904,0.901) 

31.57 

(677) 
30.67 

1837, 1838 

(0.890,0.926) 

31.59 

(681) 
31.21 

900 

384, 385 

(0.638,0.558) 

30.96 

(538.9) 
30.96 

1014, 1015 

(0.849,0.779) 

31.80 

(732) 
31.70 

1024 

422, 423 

(0.843, 0.818) 

32.10 

(849.1) 
32.05 

739, 740 

(0.841,0.826) 

32.12 

(853.5) 
32.02 
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In Table 5, the first and the second columns represent underlying channels (or traces collected 

at the given physical data rates and transmit rates), the third column represents time window 

indices, which were randomly chosen from a randomly chosen trace, and the predicted 

(operational optimal) rates by CLDSORPA ; the forth column represents bitrates and PSNRs of 

the video source, which was extracted based on the predicted rates; and PSNRs of video source 

which was preserved at a client are shown in the fifth column. 

We can observe from Table 5, CLDSORPA , which employs the operational rate and an R-D 

empirical model for above-capacity provides reasonably accurate rate prediction performance 

1120 1140 1160 1180 1200
0.7

0.75

0.8

0.85

0.9

0.95

time-window

a
c
h

ie
v
a

b
le

 c
a

p
a

c
it
y
(I

n
fo

.B
it
s
)

Operational Channel Capacity

ORPA
CLDS

ORPA
CON

 

1120 1140 1160 1180 1200
0.7

0.75

0.8

0.85

0.9

0.95

time-window

a
c
h

ie
v
a

b
le

 c
a

p
a

c
it
y
(I

n
fo

.B
it
s
)

Operational Channel Capacity

ORPA
CLDS

ORPA
CON

 

(a) Phy. rate– 2 Mbps & Xmit rate– 750Kbps (a)  Phys. rate– 2 Mbps & Xmit rate– 750 Kbps 
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(b) Phy. rate– 5.5 Mbps & Xmit rate– 1 Mbps (b) Phys. rate– 5.5 Mbps & Xmit rate– 1 Mbps 
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(c) Phy. rate– 11 Mbps & Xmit rate– 900 Kbps (c) Phys. rate– 11 Mbps & Xmit rate– 900 Kbps 

Fig. 8. The operational channel capacity prediction 

(zoomed in) results by CLDSORPA  and CONORPA before 

rate tuning. 

Fig. 9. The operational channel capacity prediction (zoomed 

in) results by CLDSORPA , and CONORPA after rate tuning. 
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(accurate average PSNR to the maximum PSNR for any given channel). Note that there is a 

small amount of PSNR reduction relative to an error-free decoded bitstream. This distortion is 

due to burst errors in wireless channel which cause severe corruption on a few packets. 

However, the distortion is very small, and the bitstream at the clients preserves most of the 

original video quality (PSNR) for randomly selected rate adaptation intervals (or time 

windows) and for different transmission rates [Table 5]. Note that since the test bitstream is 10 

second long (300 frames), two consecutive time windows were used for these 

simulations. Thus, the first 150 frames and the rest were extracted according to two different 

rates. On the contrary, the video quality was computed from the entire bitstream after SVC 

decoding. 

In Fig. 10, we compare CLDSORPA  with the proposed LDPC-based UEP scheme and without 

the proposed LDPC-based UEP scheme (for the case of I frame packets loss). We can see that 

when the LDPC-based UEP scheme is used, CLDSORPA protects perceptually important 

information (i.e., I frame packets in this study), and hence the degradation of video quality is 

significantly reduced [Fig. 10]. It should be noted that in a worst case where an Instantaneous 

Decoder Refresh (IDR) frame packet, which is the first I frame packet in our SVC bit-stream, 
is lost, the entire bit-stream cannot be decoded, i.e., PSNR value becomes zero. Fig. 10 

excludes this worst case scenario.  

0 5 10 15 20
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

number of packet loss

n
o

rm
a

liz
e

d
 P

S
N

R

Quality Distortion w/ P-frame packet loss

Quality Distortion w/ I-frame packet loss

 

Fig. 10. The performance comparison in video qualities with the proposed UEP scheme and without 

UEP (when only I-frame packets are lost, i.e., the worst case). 

5. Conclusion 

In this paper, we derive and develop practical solutions such as an operational rate, an R-D 

empirical model for above-capacity SVC, and LDPC-based UEP scheme, to employ 

CLDSORPA  in practice. It is observed from trace-driven experiments that CLDSORPA  which 

incorporates the proposed schemes, provides an excellent rate prediction performance, and 

therefore robust rate adaptation can be achieved. Moreover, our experimental results showed 
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that the proposed architecture under CLDS protocols provides considerably better rate 

prediction performance and multimedia quality than that under conventional protocols. 
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