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Abstract 
 

Reliable spectrum sensing algorithm is a fundamental component in cognitive radio. In this 

paper, a non-cooperative spectrum sensing algorithm which needs only one cognitive radio 
node named CORDIC (Coordinate Rotation Digital Computer) Jacobi based method is 

proposed. The algorithm computes the eigenvalues of the sampled covariance of received 

signal mainly by shift and additional operations, which is suitable for hardware 
implementation. Based the latest random matrix theory (RMT) about the distribution of the 

limiting maximum and minimum eigenvalue ratio, the relationship between the probability of 

false alarm and the decision threshold is derived. Simulations and discussions show the 
method is effective. Real captured digital television (DTV) signals and Universal Software 

Radio Peripheral (USRP) are also employed to evaluate the performance of the algorithm, 

which prove the proposed algorithm can be applied in practical spectrum sensing applications. 
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1. Introduction 

Since the fast increase in wireless communication, the scarcity of electromagnetic radio 

spectrum has become a serious problem which has limited the development of new services in 

wireless applications. So a new way to solve the problem is urgently needed. Then, the 
Cognitive Radio (CR) was proposed, it provides a way of dynamic spectrum access for 

wireless users which would greatly improve the efficiency of spectrum utilization when 

compared with fixed spectrum allocation methods [1][2]. The CR can exploit the underutilized 

spectrum in an opportunistic manner, it makes the CR user can use the spectrum allocated to 
primary users when they are not active [3][4][5]. In this case, for the CR users, they are 

required to sense the spectrum frequently to find possible spectrum opportunities can be used 

for communication. In addition, when the primary user is become active from silence suddenly, 
the CR users have to detect the appearance of the primary user’s signal as soon as possible 

with a high probability to avoid harm interference to the primary user. It is obviously that 

reliable spectrum sensing algorithm is a fundamental component which is worth to be studied 
in cognitive radio. 

In this paper a CORDIC (Coordinate Rotation Digital Computer) Jacobi method based 

spectrum sensing algorithm for single CR user or antenna is presented. The ratio of the 

covariance matrix’s maximum and minimum eigenvalues is also employed as the decision 
statistic. A new CORDIC Jacobi method (CJM) which is suitable for practical implementation 

by hardware is proposed to obtain the eigenvalues of the covariance matrix. According to the 

conclusions made in [6][7][8][9] about the distributions of largest and smallest eigenvalues of 
a random matrix, the decision threshold and probability of false alarm of the algorithm are 

derived. The proposed method needs only one receiver and can be applied to various signal 

detection applications without prior knowledge of the signal. Compared with other 

eigenvalues decomposition method, the method proposed for eigenvalues computing needs 
mainly shift and addition operations which can be implemented easily on hardware, such as 

Filed Programmable Gate Array. Digital modulation signals, captured digital television 

(DTV) signals are used to verify the performance of the method. At the end, the spectrum 
sensing method proposed is tested by using GNU Radio and the Universal Software Radio 

Peripheral (USRP). 

The rest of the paper is organized as follow: in section 2, we review the previous work in 
spectrum sensing in cognitive radio. Section 3, signal model and some assumptions are 

introduced. The eigenvalue based spectrum sensing algorithm is provided in section 4. 

CORDIC based Jacobi method to compute the eigenvalues of the sampled covariance matrix 

is presented in section 5. The computation complexity of proposed method is analyzed in 
section 6. Threshold and probability of false alarm of proposed method is derived in section 7. 

Simulations and experiments are showed in section 8 which proves the validity of the method. 

The whole paper is concluded in section 9.  

2. Related Work 

Many algorithms have been proposed for spectrum sensing, most of them are summarized well 
in [10], including the energy detection [11][12][13], the spectrum covariance [14][15] and the 

matched filtering [16]. Each method mentioned above has different requirements or 

assumptions, also has different disadvantages. For the energy detection, its performance much 
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relies on the accurate estimation of the noise power otherwise it would lead to a high 

probability of false alarm because of SNR wall phenomena [17]. A priori known spectral 
features of the primary signal are needed in the spectrum covariance method, and the matched 

filtering method performs spectrum sensing by coherent demodulation [18] or pilot detection 

[19] of the primary user’s signal, waveforms and channels of the primary user must be known 

as prior information for the CR users. A kind of spectrum sensing algorithm based on time 
covariance of the received signal was proposed recently [3][4][20][21][22], which needs no 

prior information of the primary signal. In [3][4][23], the eigenvalues of sampled covariance 

based technique for spectrum sensing is presented. Based on the statistical covariance of 
signals received by different CR users or antennas, the maximum and minimum eigenvalues 

are derived from the covariance matrix, and then ratio of them is employed as the test statistic 

to detect the presence or absence of the primary user. The technique requires a cooperative 
detection setting, which is accomplished by multiple antennas or cooperation among different 

CR users.  

3. Signal Model And Assumptions 

If ( )r t is the signal received by the cognitive radio node (CR), there are two hypotheses of the 

received signal 

0 :   ( ) ( )H r t w t                                                           (1) 

 1 :   ( ) ( ) ( )H r t s t w t                                                    (2) 

where ( )s t is the possible primary user’s signal received by the CR receiver and ( )w t is noise. 

The two hypotheses: (1) 0H denotes the absence of the primary user’s signal; (2) 1H means the 

primary user’s signal exists in received signal. And noise ( )w t is assumed to be with zero mean 

and variance 2
w . In addition, noise is not correlated, which indicates ( ( )) 0E w t  , 

2 2( ( )) wE w t  and ( ( ) ( )) 0,  0E w t w t     . If the CR wants to use the spectrum which is 

licensed to the primary user with central frequency cf and bandwidth W , it must detect the 

presence or absence of the primary user’s signal at first to avoid causing harmful interference 

to the primary user’s normal activities. The signal is received by the CR and sampled with a 

sampling frequency sf  (so the sampling interval is sT ), and then sensing algorithm is applied 

to determine if the primary user’s signal exists or not. Here the sample of ( )r t is denoted 

as ( ) ( ) ( )sr t r nT r n  , so the two hypotheses can be rewritten as 

0 :   ( ) ( )H r n w n                                                           (3) 

1 :   ( ) ( ) ( )H r n s n w n                                                  (4) 

For 1H , the signal ( )s n received by the CR may be different from the signal 0 ( )s n  

transmitted by the primary user. It depends on the channel between the primary user and the 
CR receiver. In AWGN (Additive Gaussian White Noise) channel, it is obviously 

that 0( ) ( )s n s n . Different from [3][4], there is only one receiver or antenna participating the 

spectrum sensing, the received data samples are defined as follow 

 (1)  (2)    ( )r r r Nr                                                   (5) 
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 (1)  (2)    ( )s s s Ns                                                   (6) 

 (1)  (2)    ( )w w w Nw                                                 (7) 

where r is a 1 N vector. For practical applications.  In this paper, narrow band modulated 

signal and captured DTV signals are the candidates of primary user’s signal for spectrum 

sensing.  

4. Eigenvalue Based Spectrum Sensing 

The autocorrelation of the received samples can be computed by the equation followed 
1

0

1
( ) ( ) ( )    0,1, , 1

N

n

l r n r n l l
N






                                    (8) 

where is a positive integer named the smooth factor. So the statistical covariance matrix of 

the received signals can be defined as 

(0) ( 1)

( 1) (0)

H
r E

 

 








   
      
    

R rr                      (9) 

Obviously, it is a toeplitz and symmetric covariance matrix. With the same method, the 

covariance matrix of the signal and noise also can be obtained 
H

s E    R ss                                                         (10) 

 
H

w E    R ww                                                      (11) 

According to the signal model and assumptions of this paper, we can easily obtain that 
2

r s w R R I                                                       (12) 

with I  is the identity matrix of order N . If primary user’s signal doesn’t exist, 0s R , so the 

off-diagonal elements of rR are all zeros, then the eigenvalues of the matrix rR are all 2
w . If 

the primary user’s signal existing in the received samples, sR is not a diagonal matrix and the 

off-diagonal elements of rR should be non-zeros, that indicates the eigenvalues of rR are no 

longer all 2
w . Hence, we can detect the primary user’s signal presented or not by utilizing the 

eigenvalues of the covariance matrix of the received signals. 
Hence the maximum and minimum eigenvalues of the covariance matrix is used to 

detection of the primary user’s signal. Compared with the maximum-minimum eigenvalue 

(MME) method proposed in [3], in proposed method, modified MME method (mMME), only 

one CR node participates in detection instead of cooperatively detecting by using more than 
one CR nodes, consequently the derivations and expressions of the decision threshold must be 

modified although the steps of the two algorithms are the same. The following are the steps of 

the algorithm: 

 Step 1. Compute the sample covariance matrix rR ; 

 Step 2. The maximum and minimum eigenvalue of the covariance matrix are obtained, 

which can be denoted as max and min . 

 Step 3. Decision making: if max

min





 , we say that the primary user’s signal exists 
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( 1H ), otherwise, the signal doesn’t exist ( 0H ). And is the decision threshold. 

From the description of the steps, we can see that the key of this algorithm is eigenvalue 
decomposition of the covariance matrix and the selection of the decision threshold. They will 

be further discussed in the following section. 

Energy detection is also a classical method for spectrum sensing [24]. Let yegT be the energy 

of the received signal, it can be obtained by the following equation 

2

1

( )
N

egy

i

T r i


                                                         (13) 

The decision rule of the energy detection is 

1

0

:

:

egy egy

egy egy

H T

H T










                                                      (14) 

where egy is the decision threshold of energy detection, it can set based on probability of 

false alarm _fa egyP : 

2 2 2

_ 0( )
2 2 2

egy egy egy

w w w
fa egy egy egy

T
N N N

P P T H P Q
N N N

 

  


   
     

       
   
   
   

        (15) 

From the equation we can see that the energy detection needs accurate knowledge of the 

noise power 2

w , but in practical applications, the estimated noise power may be different from 

the actual one. If the noise power estimated by the CR node is 2 2ˆ
w w  , the noise uncertainty 

factor (in dB) can be defined as 

 10max 10log                                                    (16) 

Which indicates the  (in dB) is randomly distributed at a range of  - ， . 

5. Eigenvalues Computation 

As mentioned in the last section, the most crucial point of mMME algorithm is eigenvalue 

computation. However, to apply MME method to spectrum sensing in practical application, 
we must obtain the eigenvalues of the covariance matrix in reality instead of computer 

simulations, which requires mMME method being carried out in hardware. As a solution, a 

new  CORDIC based Jacobi method (CJM), which can be implemented on hardware, is 
proposed. It is well known that the Jacobi method can be expressed as 

1

0

( , , ) ( , , )    0,1,

                        

T
k k k k

r

p q p q k 
  




A U A U

A R
                                       (17) 

When k  , the matrix kA converges to a diagonal matrix A in terms of a rigid rotation. 

For each rotation, two elements of kA , k
pqa and k

qpa are settled to be zero. After the norm of 

off-diagonal elements of kA equal to zero, the rotation is stopped, and the diagonal elements 

of kA is considered to be the eigenvalues of the covariance matrix. The matrices 

( , , )k p q U are rotational matrices which annihilate off-diagonal elements, it can be written as 
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1 0 0 0 0

0 1 0 cos sin

0 sin cos ( , , )
0

0

0 0 0 1

p q

p

q
k

N N

p q

 

 



 
 
 
 

 
 
 
 
 
 

U                                  (18) 

where p q and , 1,2,p q  ,  is the rotation angle. Because after each rotation, 

1k
pqa  and 1k

qpa  must be zero, that indicates 

1

1

0cos sin cos sin

sin cos sin cos 0

Tk k k
pp pq pp

k k k
qp qq qq

a a a

a a a

   

   





      
      

          

              (19) 

From last equation we can obtain the relationship between the rotation angle and the 

elements of the matrix can be denoted as 

2
tan 2

k
pq

k k
pp qq

a

a a
 


                                                     (20) 

so we can derive the iterative rules for the elements of covariance matrix as follow: 

 1 2 2cos 2tan tank k k k
pp pp qp qqa a a a                                      (21) 

 1 2 2cos tan (1 tan ) tank k k k
qp pp qp qqa a a a                                (22) 

 1 2 2cos tan 2tank k k k
qq pp qp qqa a a a                                     (23) 

 1 cos tank k k
pj pj jqa a a                                                 (24) 

 1 cos tank k k
iq iq pia a a    , ,i j q p 、                                    (25) 

From the iterative rules of Jacobi method, in order to compute the eigenvalues of the matrix, 

the rotation angle must be computed at first, then multiplication and other operations such as 
divisions, are needed here. That’s time consuming and difficulty to be implemented in 

hardware. So the CORDIC algorithm is applied to avoid rotation angle computation and 

complicated operations. 

The CORDIC algorithm was invented by J.Volder in 1959[25], which is an iterative 
algorithm that only shift and add operations are needed. For the Jacobi method, the CORDIC 

module can be used to compute the rotation angle, such as in [26], but for one rotation, at least 

two CORDIC modules are needed. Here one CORDIC module with rotation mode is 
employed to eigenvalue computation. In the CORDIC iterative process, the rotation with 

angle  is divided into series of consecutive micro-rotations with angle arctan 2 m and 

requires only shift and addition operations, 0,1 ,m b , where b is the times of 

micro-rotation during one rotation with angle . The iterative process can be denoted as 

follow 
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                                        (26) 

when 0mz  , one CORDIC iterative process is completed. Where ( ) 1m md sign z   , which 

decides the rotation direction. Compared with Eq.(26) and Eq.(21-25), we 

approximates 2 tanm   , cos bK  , and ( , ) ( , )m m
r rp q q pR R , ( , ) ( , )m m

r rj p p jR R , 

( , ) ( , )m m
r ri q q iR R , ( ( , ))m

rd sign p q R , ,i j q p 、 . The new CORDIC based Jacobi 

algorithm proposed for eigenvalue computation can be derived as follow: 

 Step 1. Find the maximum absolute value of the off-diagonal elements of covariance 

matrix ( , )m
r p qR , where p and q are the row and column, respectively. 

 Step 2. One CORDIC iterative process is applied. For the elements of row p ( q ) and 

column q ( p ), the iterative process is showed in Table 1. 

 Step 3.  Repeat step 1 and 2, until the absolute values of all the off-diagonal elements of 

the m
rR are smaller than e . In this condition, the diagonal elements of the m

rR are 

considered to be the eigenvalues of the sample covariance matrix rR . 

where e is a parameter defined by the users,  its value is close to zero, which indicates the 

diagonalization of m
rR for a finite m , and 21 2 m

bK   is the scalling factor, we noticed that 

if 5m  , 0.6073bK  . So the value of bK can be pre-computed off-line, and only 6 values of it 

need to be stored in the memory of the hardware. 

Table 1. One CORDIC Jacobi iterative process 

While ( , )m
r p q eR  

 1 2 1 2( , ) ( , ) 2 ( , ) 2 ( , )m m m m m m
r b r r rp p K p p d q p q q       R R R R  

 1 2 2( , ) 2 ( , ) (1 2 ) ( , ) 2 ( , )m m m m m m m
r b r r rq p K p p d q p q q        R R R R  

 1 2 2 1( , ) 2 ( , ) 2 ( , ) ( , )m m m m m m
r b r r rq q K p p d q p q q       R R R R  

1 1( , ) ( , )m m
r rp q q p R R  

for 1: ( , )i i p q   

 

 

1

1

1 1

1 1

( , ) ( , ) 2 ( , )

( , ) ( , ) 2 ( , )

( , ) ( , )

( , ) ( , )

m m m m
r b r r

m m m m
r b r r

m m
r r

m m
r r

p i K q i d i q

i q K i q d p i

i p p i

i q q i

 

 

 

 

  

  





R R R

R R R

R R

R R

 

end 

end 

Suppose that 1 2,    are the eigenvalues of the covariance matrix rR , and 1 2,    are 

the eigenvalues computed by CJM. Because the existence of e , when the CORDIC iterative 
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process stopped the matrix m
rR can be approximated as follow 

1

2m
r

e e

e e

e e

e e   








 
 
 
 
 
  

R                                                (27) 

It can be easily proved when e is small enough, 
0

1

lim i i
e
i 

 



 . In order to evaluate the 

convergence performance of CORDIC Jacobi method, two metrics named average eignvalue 
computation errors and maximum eigenvalue computation errors are defined respectively. The 

average eignvalue computation error at the end of the j th iteration is defined as follow: 

1 1

1 1i i
j ji

i ii

err err
  

   


                                            (28) 

Where is the number of eigenvalues, i is the i
th
 eigenvalue of the covariance matrix 

computed by Matlab eig function and i is the i
th
 corresponding diagonal element of the 

matrix during the procedure of iteration. The maximum eigenvalue computation error at the 

end of the j
th
 iteration can be presented as: 

 1 2max , , ,j j j jMerr err err err                                         (29) 

As shown in Fig.1, with the increase of iterations, both of the errors are converging to 0. And 

the iteration times is determined by the computation accuracy, the higher accuracy, the more 

times of iteration are needed. If e is small enough, the computation error would converge to 0. 

when 310e  , 1576 Jacobi iterations are needed and the average computation error 

is 71.242 10  , but when 0.5e  , only 76 Jacobi iterations are executed while the average 

computation error is 0.0193.In practical applications, there is a tradeoff between computation 

accuracy and complexity. 
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Fig. 1. The convergence procedure of proposed method 
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6. Computational complexity 

The complexity of mMME is mainly consisted by three parts: computation of the statistical 

covariance matrix (as in equation (8) and (9)),  operation of sorting the absolute value of the 
off-diagonal elements of covariance matrix and the eigenvalus computation. For the first part, 

since the covariance matrix is symmetrical, the main computational complexity is to compute 

the autocorralation of received samples. Hence ( 1)N  multiplications and ( 1)N   

additions are needed. Taking advantages of the symmetric property of the covariance matrix, 

the second part is comparisions of the absolute value of the upper triangular elements (the 

diagonal elements are not included), so 0.5 ( 1)    comparisions are executed in each Jacobi 

iteration. In practical implementation, if the word length is l , hence the number of CORDIC 

rotations in each Jacobi iteration is l  at most, as shown in Table 1, after l times of right shifts, 

both of the 2 ( , )l l
r p p R and 2 ( , )l l

r q q
R  equal to 0, the value of 2(1 2 )l  approximates to 1,  

in this case,  the value of ( , )m
r q pR never changes, one Jacobi iteration is finished. For each 

CORDIC rotation, 2(1 ) shifts and (3 2 ) additions are needed. The scaling can be 

executed with approximatedly 0.25l shifts and additions. The times of Jacobi iteration are 

determined by the computation accuracy, the smaller of e , the more times of iteration are 

needed. We assume J Jacobi iterations are needed to complete the diagonalization of the 

covariance matrix, therefore the complexity of the proposed method is summarized in Table 

2. 

Table 2. Computation complexity of proposed method 

multiplications additions comparisions shifts 

( 1)N   ( 1) (3.25 2 )N Jl     0.5 ( 1)J    (2.25 2 )Jl  

 

We assume that the word length 16l  , 8  . As mentioned in [27], its total computation 

complexity of the eigenvalue computation is 

   4 ( 1)( 2) 1 4.25  5.25  l shifts l additions        

While the method proposed in this paper are 0.5 ( 1)J   comparisons, (2.25 2 )Jl shifts 

and (3.25 2 )Jl additions, respectively. So in the same experiment settings, the method 

proposed in [26] needs at least 43928 clock cycles. If proposed CORDIC Jacobi method 

executes the same clock cycles, it is easy to see that least 71 Jacobi iterations can be carried out 

for eigenvalue computation. But for such a covariance matrix, only after 28 Jacobi iterations, 
the maximum eigenvalue computation error is below 0.5%, which is precise enough for most 

of the spectrum sensing application. 

 7. Decision Threshold And Probability Of False Alarm 

If the primary user’s signal doesn’t exist, the sample covariance matrix rR turns to be 

H H
r wE E

    
        R rr ww R                                     (30) 

according to the conclusions of [21], wR can be considered as a Wishart random matrix. Many 

researchers, such as Soshnikov, Ruzmaikina, Feldheim[7], and Federico Penna [23] have done 

lots of work on studying the eigenvalue distributions of a random matrix. Based on the results 
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they had given, when N and are large, and 1 2      are the eigenvalues of 
2 w

w

N


R , 

let 

2N N                                                          (31) 

2N N                                                          (32) 

1

3
1 1

( )
N

 


                                                      (33) 

1

3
1 1

( )
N

 


                                                     (34) 

we can obtain that L 


 




 and 1

1L
 




 , both of them converge in distribution to the 

Tracy-Widom lawTw [23], because the noise here is real, so 1   (if complex, 2   ). The 

Tracy-Widom law 2Tw is defined, its cumulative density function is 

 2

2( ) exp ( ) ( )Tw
x

F x t x t dt


                                       (35) 

where ( )  is the solution to the differential equation: 

'' 3( ) ( ) 2 ( )t t t t                                                     (36) 

In [6], it had shown that when 1  , then 

 1 2

2 ( ) ( )exp ( )Tw Tw
x

F x F x t dt


                                     (37) 

so the distribution function is defined as 

1

21
( ) exp (( ) ( ) ( ))

2
Tw

x
F x t x t t dt 

 
    

 
                           (38) 

                       

The decision statistic T can be written as[9]: 

1 1

L
T

L

   

  


 


                                                    (39) 

If ( )f t


and
1
( )f t denote the limiting probability density function (PDF) of  and 1 , 

respectively, and the two PDFs can be expressed by a linear random variable transformation of 

the Tracy-Widom PDF, hence they can be presented as follow: 

w1

1
( ) ( )T

t
f t f





 


                                                   (40) 

1 1

1
( ) ( )Tw

t
f t f



 


                                                   (41) 

Where 1( )Twf  is the PDF of the Tracy-Widom distribution with order 1. Because ( )f t


 

and
1
( )f t are independent for ,N   , so the PDF of T is: 

 
0

1 2
0

1
( ) ( ) ( )    ( 1)Tw TwT H

tx tx
f t x f f dx t

 

  

  
                        (42) 

The condition 1t  is to assure 1  . Let
0
( )

T H
F t is the cumulative density function of the 
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decision statistic, it can be written as 

0 01
( ) ( )

T H T H
F t f t dt



                                                  (43) 

So the probability of false alarm can be given as follow 

0
0( ) 1 ( )fa T H

P P T H F                                            (44) 

At the same time, if the false probability of detection is fixed, the decision threshold can be 

computed by this equation 

0

1 (1 )faT H
F P                                                         (45) 

At the same time, if the false probability of detection is fixed, the decision threshold can be 

computed by this equation which means we can set the decision threshold according to the 
required error constraints. For the Tracy Widom distribution, since its importance in Rand 

Matrix Theory, this distribution has been extensively studied and tabulated, and a Matlab 

routing to compute is available at [28]. In practical applications, the values of
0

1 ( )
T H

F   can be 

computed off-line and stored in a look-up table. 

However, the eigenvalues of the sample covariance matrix are computed by CJM, the errors 

between the true values and the computed ones can not be avoided because the approximate 
rotations instead of complex accurate computations. The error would lead to a wrong sensing 

result especially when the SNR is very low. Parts of the error can be reduced by selecting a 

suitable e . Computer simulation proves that when e is small enough, the ratio max

min
TCJM




  is 

approximating to max
min

T



 . But to find an analytical formula to analyze the error is difficult 

and complex, fortunately, the following computer simulation proves that when e is small 

enough, the error’s influence to performance of spectrum sensing can be neglected.  

8. Simulation Results And Experiments 

In this part, some simulation results are given to evaluate the performance of proposed 

method. Here digital modulated signals and captured DTV signals are employed as the 
primary user’s signals. The probability of false alarm is set to 0.05 and times of test for each 

SNR are 1000 unless redefined in simulations specially.  

The decision statistic 

The ratio of maximum and minimum eigenvalues of the sample covariance is the decision 
statistic of the spectrum sensing method, so the computation of the ratio is very important. 

Here the eigenvalues are computed by CORDIC Jacobi method and under the hypothesis of 

0H , to evaluate the accuracy of the proposed method, we fixed 310e  , and the length of 

received 16QAM signal sample is 8000 and 32000, the smooth factor is 8 and 16, respectively. 
WhereT is the ratio of maximum and minimum eigenvalues computed by Matlab eig function 

while CJMT is the one computed by proposed method. Fig.2 shows the ratio changes versus 

noise variance from 3.162 to 31.62. For each noise variance, the average value of 2000 
simulations is considered to be the final result of the ratio. From the figure we can see that the 

two ratios matched very well, it proves that proposed method can obtain the ratio with a high 

accuracy when 310e  . Fig.3 shows the errors between the two ratios versus e , in the same 

way, 2000 trials are made for each e . It is obvious that the error is increased when e become 

larger. It is reasonable, just because a larger e indicates the off-diagonal elements of the sample 

covariance matrix is not close enough to zero when the iterative process stopped. We noticed 
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that when 310e  the error between the two results can be neglected, and when 110e  , the 

errors between them approximate to a constant value. These two simulations showed that if we 

can choose a suitable e for proposed eigenvalue decomposition method, a better tradeoff 

between computation accuracy and complexity can be achieved. If e is too small, a more 

accurate ratio can be obtained while the computation complexity would be increased. If e is 

too large, the computation complexity would be reduced but it may lead to a result with low 

accuracy. In this paper, e is set to 0.001 without special illustration. 
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Fig. 2. The ratios computed by two methods versus noise variance (under 0H ). 
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Fig.3. The ratios computed by two methods versus e  (under 0H ). 

QAM signals detection 
The 16QAM signal is generated with carrier frequency 24MHz, and symbol rate 6Mbps, the 

base-band signal is filtered by a root squared raise cosine filter with roll off factor 0.5 before 

modulation. The sampling frequency of the receiver is 96MHz, which are 4 times the carrier 
frequency and 16 times of the symbol rate. The probabilities of detection and false alarm are 

showed in Fig.4. In this figure, the sample size is 8000, the SNR varies from -25dB to 0dB 

with a step 1dB. The dmMMEP ( famMMEP ) denotes the detection (false alarm) probability of the 

proposed method, while dP ( faP ) denotes the detection (false alarm) probability of the method 

which the eigenvalues used in simulations are computed by Matlab eig function. The 
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probability of false alarm is set to 0.05 and the decision threshold of mMME method is 

computed according to Eq.(45). From the figure we can see that dP ( faP ) and 

dmMMEP ( famMMEP ) are matched very well. Enegy detection is employed to spectrum sensing, 

and noise uncertainty is also introduced in the simulations. When there is no noise uncertainty, 
the mMME and energy detection perform similar detection results, and the simulated 

probability of false alarm fits well with theoretical value. Obviously, from the figure we can 

see that the probability of false alarm is not related to the SNR of received signal. However 

when we assume 2dB noise uncertainty exists in received signal, the performance of energy 
detection decreases heavily while there is no obvious influence on the performance of mMME 

method.   These simulations prove the proposed mMME method overcomes the noise 

uncertainty problem which is the main problem of energy detection.  
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Fig. 4. Probabilities of detection and false alarm for QAM signal. 

Fig.5 shows the changes of probabilities of detection and false alarm with different e when 

SNR is -14dB. For each e , 2000 tests are applied. In this simulation setting, we noticed that 

when e is smaller than 0.01, the probabilities of proposed method approximately equal to the 

ones which eigenvalues are computed by Matlab eig function, that is because when e is smaller 

than 0.01, the computation errors of the ratio computed by proposed method is small. So the 
performances of them are similar. The simulation also proves that proposed method can detect 

the presence or absence of the primary signal effectively at a very low SNR. 
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Fig.5. Probabilities of detection and false alarm with different e for QAM signal. 
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Fig.6 and Fig.7 show the influence of received data samples and smooth factors to the 

performance of proposed method. It is obvious that if more received data samples can be 
obtained, it would improve the performance of detection when they are with the same 

probabilities of false alarm. And it indicates that the probability of false alarm of proposed 

method is not sensitive to the length of received data samples. From Fig.7, when the smppth 

factor is smaller than 8, the probability of detection is increased with the increase of smooth 
factor. But when it is larger than 8, there is only slight variation in detection performance. In a 

spectrum sensing application, we always hope when the smooth factor is fixed, the probability 

of detection can be as larger as possible while smaller for probability of false alarm. So when 
the sample size is 8000 and the smooth factor is bigger than 8, we can get a difference large 

enough between the two probabilities. Due to the computation complexity, we prefere to 

choose smaller smooth factor and sample size when they are with the same performance 
guarantee. From the result of Fig.7, a larger smooth factor may improve the detection 

performance, but it also increases the computing complexity.  
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Fig. 6. Probabilities of detection and false alarm with different length of data samples for QAM signal 
(SNR=-18dB). 
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Fig. 7. Probabilities of detection and false alarm with different smooth factors for QAM signal 

(SNR=-14dB). 
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Fig.8 shows the probability of false alarm versus the decision threshold. The theoretical 

probability of the false alarm is computed according to Eq. (44). The probability of false alarm 

of proposed method is also simulated at a range of  from 1 to 1.4. For each  , 5000 tests are 

made. From the simulation results, the simulated results and the theoretical ones are matched 

well. It is significant for us to find an appropriate decision threshold when the probability of 
false alarm needed in real applications has been determined. 
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Fig. 8. Probability of false alarm versus  . 

Captured DTV signal 
In this part, we use the captured real ATSC DTV signals (field measurements) to evaluate 

the proposed method[29]. The captured signal data used here is WAS_3_27_06022000_REF,  

which is provided by Dr.Y.H.Zeng[30]. The following is the test condition of the captured 

DTV signal: the DTV signal is received by an antenna with height of 30 feet, suburban, 
Washington D.C., USA. The distance between the DTV station and the receiver is 48.41 miles, 

and the received signal is sampled with a frequency of 10.762MHz. The multi-path channel 

between the receiver and the DTV station is unknown and also the SNR of signal received. In 
this test, white Gaussian noise is added to the signal to evaluate the performance of proposed 

method at different SNR levels. The decision threshold is selected according to Eq. (45). Fig.9 

shows the results of detection. From the figure we can see that if the SNR of the received 
signal is higher than -13dB, with 32000 data samples (2.9734ms), the method can detect the 

DTV signal successfully. According to the IEEE 802.22 standard [31], a cognitive radio 

device should finish spectrum sensing within 2 seconds.  
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Fig.9. Probability of detection for captured DTV signals in Washington, USA. 
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If the cognitive radio uses a quiet period of 40ms (time consuming for signal processing is included) 

every 2 seconds for spectrum sensing, the proposed method can provide its user 98% of time to 

transmission. 

Captured digital modulated signal 

In order to prove the proposed method in a real test environment, the Ettus USRP hardware 

is utilized as an RF front-end of the CR user. The GNU Radio open-source software and 

matlab are used as software interface. The Agilent Vector Signal Generator (E4438C) is 
employed as the primary user. The primary signal is a QAM signal, with modulation level 16, 

carrier frequency 2.441GHz and symbol rate 1Mbps. The distance between the two antennas 

of the CR and primary is about 30 centimeters (see Fig. 10).  The signal samples collected by 
the USRP are sent back through USB to the laptop for further processing. 

 

Fig. 10. Experiment setting 

The SNR of received signal is measured by a software defined spectrum analyzer developed by GNU 

Radio and USRP. The tests prove that when SNR is larger than 0dB, the proposed method always can 

detect the primary signal successfully. Because there is no effective way to measure the SNR of 
received signal smaller than 0dB, white Gaussian noise is added to the signal samples captured by the 

USRP to test the proposed method at different SNR levels.  
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Fig. 11. Probability of detection for QAM signals which are captured by USRP. 

From Fig.11, compared with the results of computer simulations, the experimental probability 
is much lower. The explanation to this phenomenon is the signal samples received by the 

USRP have been polluted by noise before white Gaussian noise is added, what we can do in 

the experiment is try our best to improve the SNR of received data samples, such as increase 
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the transmission power of the signal generator. Hence the actual SNR of the received data 

sample is much lower than the SNR presented in Fig.11, while the data samples are pure in 
computer simulations. Although there is a performance decrease, we still see that the proposed 

method also can detect the presence of primary signal at a low SNR with a high probability of 

detection. 

9. Conclusion 

In this paper, a CORDIC-Jacobi based spectrum sensing algorithm is proposed. The 
algorithm can obtain the maximum and minimum eigenvalues of sampled covariance matrix 

of received signal mainly by shift and additional operations. Latest random matrix theories 

have been employed to set the decision threshold according to a given probability of false 

alarm. Simulations based on digital modulated QAM signals showed the method can detect the 
absence and presence of primary signal effectively. Real captured DTV signal and digital 

modulated QAM signal are applied to evaluate the performance of proposed method. All the 

simulations and experiments show that the method works well without using the information 
of signal, channel and noise. 
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