DOI QR코드

DOI QR Code

The influence of implant diameter, length and design changes on implant stability quotient (ISQ) value in artificial bone

임플란트의 직경, 길이 및 디자인변화가 임플란트 안정성지수(ISQ)에 미치는 영향

  • Lee, Jeong-Yol (Postgraduate School of Clinical Dentistry, Institute for Clinical Dental Research, Korea University) ;
  • Lee, Won-Chang (Postgraduate School of Clinical Dentistry, Institute for Clinical Dental Research, Korea University) ;
  • Kim, Min-Soo (Postgraduate School of Clinical Dentistry, Institute for Clinical Dental Research, Korea University) ;
  • Kim, Jong-Eun (Postgraduate School of Clinical Dentistry, Institute for Clinical Dental Research, Korea University) ;
  • Shin, Sang-Wan (Postgraduate School of Clinical Dentistry, Institute for Clinical Dental Research, Korea University)
  • 이정열 (고려대학교 임상치의학대학원, 임상치의학연구소) ;
  • 이원창 (고려대학교 임상치의학대학원, 임상치의학연구소) ;
  • 김민수 (고려대학교 임상치의학대학원, 임상치의학연구소) ;
  • 김종은 (고려대학교 임상치의학대학원, 임상치의학연구소) ;
  • 신상완 (고려대학교 임상치의학대학원, 임상치의학연구소)
  • Received : 2012.09.18
  • Accepted : 2012.10.10
  • Published : 2012.10.31

Abstract

Purpose: The purpose of this study is to ascertain the stability of the implant by comparing the effects of the change of implant diameter, length and design on implant stability quotient. Materials and methods: To remove the variable due to the difference of bone quality, the uniform density (0.48 g/$cm^3$) Polyuretane foam blocks (Sawbones$^{(R)}$, Pacific Research Laboratories Inc, Vashon, Washington) were used. Implants (Implantium$^{(R)}$, Dentium, Seoul, Korea) were placed with varying diameters (${\phi}3.8$, ${\phi}4.3$ and ${\phi}4.8$) and length (8 mm, 10 mm and 12 mm), to assess the effect on implant stability index (ISQ). Also the influence of the design of the submerged and the non-submerged (SimplelineII$^{(R)}$, Dentium, Seoul, Korea) on ISQ was evaluated. To exclude the influence of insertion torque, a total of 60 implants (n = 10) were placed with same torque to 35 N. Using Osstell$^{TM}$ mentor (Integration Diagnostic AB, Sweden) ISQ values were recorded after measuring the resonant frequency, one-way ANOVA and Tukey HSD test results were analyzed. (${\alpha}$=0.05). Results: 1. The change of the diameter of the implant did not affect the ISQ (P>.05), but the increase of implant length increased the ISQ(P<.001). 2. The change in implant design were correlated with the ISQ, and the ISQ of submerged design was significantly higher than that of the non-submerged design(P<.05). Conclusion: In order to increase implant stability, the longer implant is better to be selected, and on the same length of implant, submerged design is thought to be able to get a higher ISQ than the non-submerged.

연구 목적: 이 연구의 목적은 임플란트의 직경, 길이 및 디자인의 변화가 임플란트 안정성 지수에 미치는 영향을 비교하는 것이다. 연구 재료 및 방법: 골질차이에 의한 변수를 제거하기 위해 상악골 평균밀도와 유사한 균일한(0.48g /$cm^3$) 밀도를 가진 Polyuretane foam blocks (Sawbones$^{(R)}$, Pacific Research Laboratories Inc, Vashon, Washington)을 이용, 임플란트(Implantium$^{(R)}$, Dentium, Seoul, Korea)를 다양한 직경(${\phi}3.8$, ${\phi}4.3$${\phi}4.8$)과 길이(8, 10 및 12 mm)로 식립하여 그 변화가 임플란트 안정성 지수(Implant Stability Quotient, ISQ)에 미치는 영향을 비교하였다. 또 같은 직경과 길이(${\phi}4.3{\times}10mm$)에서 submerged와 non-submerged (SimplelineII$^{(R)}$, Dentium, Seoul, Korea) 디자인이 ISQ 에 미치는 영향을 비교하였다. 식립 회전력의 영향을 배제하기 위해 동일한 35 N의 Torque로 각 실험군당 10개씩 총 60개의 임플란트를 식립하였다. Osstell$^{TM}$ mentor(Integration Diagnostic AB, Sweden)를 이용하여 공진주파수를 측정한 후 ISQ 값으로 기록하였고, 그 결과를 one-way ANOVA와 Tukey HSD test로 분석하였다(${\alpha}$=.05). 결과: 1. 임플란트 직경의 변화는 ISQ에 영향을 미치지 않았으나(P>.05), 임플란트 길이가 증가함에 따라 ISQ도 증가하였다(P<.001). 2. 임플란트 디자인의 변화는 ISQ와 유의한 상관관계를 보여 Submerged 디자인의 ISQ가 non-submerged 디자인보다 높게 나타났다(P<.05). 결론: 임플란트 안정성을 높이기 위해서는 가능한 길이가 긴 임플란트를 식립하는 것이 유리하며, 같은 길이의 임플란트에서 볼 때 Non-submerged 디자인보다 submerged 디자인이 더 높은 ISQ를 얻을 수 있을 것으로 생각된다.

Keywords

References

  1. Branemark PI, Adell R, Breine U, Hansson BO, Lindstrom J, Ohlsson A. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg 1969;3:81-100. https://doi.org/10.3109/02844316909036699
  2. Adell R, Lekholm U, Rockler B, Branemark PI. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 1981;10:387-416. https://doi.org/10.1016/S0300-9785(81)80077-4
  3. Adell R, Eriksson B, Lekholm U, Branemark PI, Jemt T. Longterm follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. Int J Oral Maxillofac Implants 1990;5:347-59.
  4. Meredith N. Assessment of implant stability as a prognostic determinant. Int J Prosthodont 1998;11:491-501.
  5. Atsumi M, Park SH, Wang HL. Methods used to assess implant stability: current status. Int J Oral Maxillofac Implants 2007;22: 743-54.
  6. Javed F, Almas K, Crespi R, Romanos GE. Implant surface morphology and primary stability: is there a connection? Implant Dent 2011;20:40-6. https://doi.org/10.1097/ID.0b013e31820867da
  7. Trisi P, De Benedittis S, Perfetti G, Berardi D. Primary stability, insertion torque and bone density of cylindric implant ad modum Branemark: is there a relationship? An in vitro study. Clin Oral Implants Res 2011;22:567-70. https://doi.org/10.1111/j.1600-0501.2010.02036.x
  8. Friberg B, Sennerby L, Meredith N, Lekholm U. A comparison between cutting torque and resonance frequency measurements of maxillary implants. A 20-month clinical study. Int J Oral Maxillofac Surg 1999;28:297-303. https://doi.org/10.1016/S0901-5027(99)80163-5
  9. Sennerby L, Meredith N. Resonance frequency analysis: measuring implant stability and osseointegration. Compend Contin Educ Dent 1998;19:493-8, 500, 502.
  10. Meredith N, Alleyne D, Cawley P. Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin Oral Implants Res 1996;7:261-7. https://doi.org/10.1034/j.1600-0501.1996.070308.x
  11. Friberg B, Sennerby L, Linden B, Grondahl K, Lekholm U. Stability measurements of one-stage Branemark implants during healing in mandibles. A clinical resonance frequency analysis study. Int J Oral Maxillofac Surg 1999;28:266-72. https://doi.org/10.1016/S0901-5027(99)80156-8
  12. Ohta K, Takechi M, Minami M, Shigeishi H, Hiraoka M, Nishimura M, Kamata N. Influence of factors related to implant stability detected by wireless resonance frequency analysis device. J Oral Rehabil 2010;37:131-7. https://doi.org/10.1111/j.1365-2842.2009.02032.x
  13. Lachmann S, Jager B, Axmann D, Gomez-Roman G, Groten M, Weber H. Resonance frequency analysis and damping capacity assessment. Part I: an in vitro study on measurement reliability and a method of comparison in the determination of primary dental implant stability. Clin Oral Implants Res 2006;17:75-9. https://doi.org/10.1111/j.1600-0501.2005.01173.x
  14. Lachmann S, Laval JY, Axmann D, Weber H. Influence of implant geometry on primary insertion stability and simulated periimplant bone loss: an in vitro study using resonance frequency analysis and damping capacity assessment. Int J Oral Maxillofac Implants 2011;26:347-55.
  15. Sim CP, Lang NP. Factors influencing resonance frequency analysis assessed by Osstell mentor during implant tissue integration: I. Instrument positioning, bone structure, implant length. Clin Oral Implants Res 2010;21:598-604. https://doi.org/10.1111/j.1600-0501.2009.01878.x
  16. Han J, Lulic M, Lang NP. Factors influencing resonance frequency analysis assessed by Osstell mentor during implant tissue integration: II. Implant surface modifications and implant diameter. Clin Oral Implants Res 2010;21:605-11. https://doi.org/10.1111/j.1600-0501.2009.01909.x
  17. Saadoun AP, LeGall ML. Clinical results and guidelines on Steri-Oss endosseous implants. Int J Periodontics Restorative Dent 1992;12:486-95.
  18. Jaffin RA, Berman CL. The excessive loss of Branemark fixtures in type IV bone: a 5-year analysis. J Periodontol 1991;62:2-4. https://doi.org/10.1902/jop.1991.62.1.2
  19. Langer B, Langer L, Herrmann I, Jorneus L. The wide fixture: a solution for special bone situations and a rescue for the compromised implant. Part 1. Int J Oral Maxillofac Implants 1993;8:400-8.
  20. Ivanoff CJ, Sennerby L, Johansson C, Rangert B, Lekholm U. Influence of implant diameters on the integration of screw implants. An experimental study in rabbits. Int J Oral Maxillofac Surg 1997;26:141-8.
  21. Chan HL, El-Kholy K, Fu JH, Galindo-Moreno P, Wang HL. Implant primary stability determined by resonance frequency analysis in surgically created defects: a pilot cadaver study. Implant Dent 2010;19:509-19. https://doi.org/10.1097/ID.0b013e3181fa7f6a
  22. Fenner M, Vairaktaris E, Stockmann P, Schlegel KA, Neukam FW, Nkenke E. Influence of residual alveolar bone height on implant stability in the maxilla: an experimental animal study. Clin Oral Implants Res 2009;20:751-5. https://doi.org/10.1111/j.1600-0501.2009.01570.x
  23. Abrahamsson I, Linder E, Lang NP. Implant stability in relation to osseointegration: an experimental study in the Labrador dog. Clin Oral Implants Res 2009;20:313-8. https://doi.org/10.1111/j.1600-0501.2008.01646.x
  24. Tabassum A, Meijer GJ, Wolke JG, Jansen JA. Influence of surgical technique and surface roughness on the primary stability of an implant in artificial bone with different cortical thickness: a laboratory study. Clin Oral Implants Res 2010;21:213-20. https://doi.org/10.1111/j.1600-0501.2009.01823.x
  25. Tabassum A, Meijer GJ, Wolke JG, Jansen JA. Influence of the surgical technique and surface roughness on the primary stability of an implant in artificial bone with a density equivalent to maxillary bone: a laboratory study. Clin Oral Implants Res 2009;20:327-32. https://doi.org/10.1111/j.1600-0501.2008.01692.x
  26. Al-Nawas B, Wagner W, Grotz KA. Insertion torque and resonance frequency analysis of dental implant systems in an animal model with loaded implants. Int J Oral Maxillofac Implants 2006;21:726-32.
  27. Turkyilmaz I, Tozum TF, Tumer C, Ozbek EN. Assessment of correlation between computerized tomography values of the bone, and maximum torque and resonance frequency values at dental implant placement. J Oral Rehabil 2006;33:881-8. https://doi.org/10.1111/j.1365-2842.2006.01692.x
  28. Devlin H, Horner K, Ledgerton D. A comparison of maxillary and mandibular bone mineral densities. J Prosthet Dent 1998;79:323-7. https://doi.org/10.1016/S0022-3913(98)70245-8
  29. Isoda K, Ayukawa Y, Tsukiyama Y, Sogo M, Matsushita Y, Koyano K. Relationship between the bone density estimated by cone-beam computed tomography and the primary stability of dental implants. Clin Oral Implants Res 2012;23:832-6. https://doi.org/10.1111/j.1600-0501.2011.02203.x
  30. Bardyn T, Ge'det P, Hallermann W, Buchler P. Quantifying the influence of bone density and thickness on resonance frequency analysis: an in vitro study of biomechanical test materials. Int J Oral Maxillofac Implants 2009;24:1006-14.
  31. Krennmair G, Waldenberger O. Clinical analysis of wide-diameter frialit-2 implants. Int J Oral Maxillofac Implants 2004;19:710-5.
  32. Grunder U, Polizzi G, Goene′R, Hatano N, Henry P, Jackson WJ, Kawamura K, Kohler S, Renouard F, Rosenberg R, Triplett G, Werbitt M, Lithner B. A 3-year prospective multicenter followup report on the immediate and delayed-immediate placement of implants. Int J Oral Maxillofac Implants 1999;14:210-6.
  33. Bilhan H, Geckili O, Mumcu E, Bozdag E, Sunbuloglu E, Kutay O. Influence of surgical technique, implant shape and diameter on the primary stability in cancellous bone. J Oral Rehabil 2010;37:900-7. https://doi.org/10.1111/j.1365-2842.2010.02117.x
  34. Kido H, Schulz EE, Kumar A, Lozada J, Saha S. Implant diameter and bone density: effect on initial stability and pull-out resistance. J Oral Implantol 1997;23:163-9.

Cited by

  1. Retrospective study of implant stability according to the implant length, diameter and position vol.51, pp.4, 2013, https://doi.org/10.4047/jkap.2013.51.4.269
  2. Retrospective clinical study of ultrawide implants more than 6 mm in diameter vol.38, pp.1, 2016, https://doi.org/10.1186/s40902-016-0075-z