DOI QR코드

DOI QR Code

An Adaptive Temporal Suppression for Reducing Network Traffic in Wireless Sensor Networks

무선 센서 네트워크에서 통신량 감소를 위한 적응적 데이터 제한 기법

  • Min, Joonki (Agency for Defense Development) ;
  • Kwon, Youngmi (Department of Information Communications Engineering, Chungnam National University)
  • Received : 2012.08.04
  • Published : 2012.10.25

Abstract

Current wireless sensor networks are considered to support more complex operations ranging from military to health care which require energy-efficient and timely transmission of large amounts of data. In this paper, we propose an adaptive temporal suppression algorithm which exploits a temporal correlation among sensor readings. The proposed scheme can significantly reduce the number of transmitted sensor readings by sensor node, and consequently decrease the energy consumption and delay. Instead of transmitting all sensor readings from sensor node to sink node, the proposed scheme is to selectively transmit some elements of sensor readings using the adaptive temporal suppression, and the sink node is able to reconstruct the original data without deteriorating data quality by linear interpolation. In our proposed scheme, sensing data stream at sensor node is divided into many small sensing windows and the transmission ratio in each window is decided by the window complexity. It is defined as the number of a fluctuation point which has greater absolute gradient than threshold value. We have been able to achieve up about 90% communication reduction while maintaining a minimal distortion ratio 6.5% in 3 samples among 4 ones.

무선 센서 네트워크의 응용분야가 확장됨에 따라 대용량 측정 데이터의 전송에 대하여 에너지 효율성과 실시간성이 요구되고 있다. 본 논문에서는 센서 노드의 수집 데이터가 갖는 시간적 상관관계를 이용하여 센서 노드의 데이터 전송량을 감소시킴으로써, 에너지 효율성을 높이고 통신 지연을 단축시킬 수 있는 적응적 데이터 제한기법을 제안한다. 센서 노드에서는 적응적 데이터 제한기법을 이용하여 전송하는 측정값의 개수를 줄이고, 싱크 노드에서는 선형 보간법을 통하여 누락된 데이터를 복원한다. 제안하는 기법은 전송량 감소효과가 높아지더라도 데이터 품질의 큰 저하 없이 측정된 신호의 특성을 복원할 수 있다. 이 기법은 센서 데이터를 일정 구간으로 나누고, 그 구간 안에서 신호의 복잡도에 따라 싱크 노드로 전송하는 측정값의 개수를 다르게 한다. 측정 윈도우 내에서 신호의 복잡도는 기울기 변화량의 절대값이 임계치를 벗어나는 측정점의 개수를 기준으로 하였다. 제안하는 기법의 유효성을 확인하기 위해 4개의 샘플 데이터에 대하여 시뮬레이션을 통한 성능평가를 수행하였으며, 그 결과 3종의 샘플에서 6.8% 왜곡율에서 전송되는 측정값의 개수가 90%감소하는 효과를 얻었다.

Keywords

References

  1. J. Yick, B. Mukherjee, and D. Ghosal. "Wireless sensor network survey", Computer Networks, Vol. 52, Issue 12, pp. 2292-2330, August 2008.
  2. 손호선, 박성승, 전서인, 류근호, "전장감시 센서네 트워크시스템을 위한 온톨로지 기반 상황인식 프 레임워크", 전자공학회논문지-CI 48권, 제4호, 9-20 쪽, 2011년 7월
  3. 정인교, 김영준 박인수 이인성, "원격 진료를 이한 실시간 생체 신호 취득, 전송 및 압축, 저장 시스 템 설계 및 구현", 전자공학회 논문지-SC, 제45권 제4호, 42-50쪽, 2008년 7월
  4. M. Stemm and R. H. Katz, "Measuring and reducing energy consumption of network interfaces in hand-held devices", IEICE Transactions on Communications, vol. E80-B(8), pp. 1125-1131, 1997.
  5. G. Anastasia, M. Contib, M. D. Francescoa, and A. Passarella, "Energy conservation in wireless sensor networks: A survey", Ad Hoc Networks, Vol. 7, No. 3, pp. 537-568, 2009. https://doi.org/10.1016/j.adhoc.2008.06.003
  6. Aliasing and Sampling at Frequencies Above the Nyquist Frequency "http://www.ni.com/white-pa per/3000/en" (접속일 2012.10.9. 16:00).
  7. Y. Qian, Jeng-muk Kang, Jook-young Kim, Joon-ki Min, and Young-mi Kwon, "DTR-Filter: An Efficient Transmission Scheme for Real-Time Monitoring in Wireless Bulky Sensor Networks", Lecture Notes in Computer Science, Vol 6935, pp. 90-97, 2011.
  8. C. Tang, C. S. Raghavendra, "Compression techniques for wireless sensor networks", Chapter 10 in book Wireless Sensor Networks, pp. 207-231, Kluwer Academic Publishers, 2004.
  9. S. Santini, and K. Römer, "An adaptive strategy for quality-based data reduction in wireless sensor networks", in Proc. of the 3rd Int'l Conference on Networked Sensing Systems (INSS 2006), pp. 29-36, Chicago, USA, June 2006.
  10. C. Liu, K. Wu, and M. Tsao, "Energy Efficient Information Collection with the ARIMA Model in Wireless Sensor Networks", in Proc. from IEEE Globecom, vol. 5, pp. 2470-2474, St Louis, USA, June 2005.
  11. A. Silberstein, R. Braynard, G. Filpus, G. Puggioni, A. Gelfand, K. Munagala, and J. Yang, "Data Driven Processing in Sensor Networks,'' in the 3rd Biennial Conf. on Innovative Data Systems Research, pp. 10-21. Asilomar, USA, January 2007.
  12. D. Chu, A. Deshpande, J.M. Hellerstein, W. Hong, "Approximate Data Collection in Sensor Networks using Probabilistic Models", in Proc. of the 22nd International Conference on Data Engineering (ICDE06), pp. 48-59, Atlanta, USA, April 2006.
  13. D. Tulone, S. Madden, "PAQ: Time series forecasting for approximate query answering in sensor networks", in Proc. of the 3rd European Conference on Wireless Sensor Networks (EWSN06), pp. 21-37, Zurich, Switzerland, February 2006.
  14. D. Petrovic, R. Shah, K. Ramchandran, and J. Rabaey. "Data funneling: Routing with aggregation and compression for wireless sensor networks", in Proc. of the 2003 IEEE Sensor Network Protocols and Applications, pp. 156-162, Anchorage, USA, May 2003.
  15. E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi, "In Network Aggregation Technique for Wireless Sensor Networks: A Survey", Wireless Communications, IEEE, Vol. 14, pp. 70-87, April 2007.
  16. S. Pattem, B. Krishnamachari, and R. Govindan. "The impact of spatial correlation on routing with compression in wireless sensor networks". in Proc. of the 3rd international symposium on Information processing in sensor networks (IPSN '04), pp. 28-35, Berkeley, USA, April 2004.
  17. Y.-A. Le Borgne, S. Santini, G. Bontempi, "Adaptive Model Selection for Time Series Prediction in Wireless Sensor Networks", Signal Processing (Elsevier publisher), Vol. 87, Issue 12, pp. 3010-3020, December 2007. https://doi.org/10.1016/j.sigpro.2007.05.015
  18. M. Sharaf, J. Beaver, A. Labrinidis, and P. Chryanthis, "Tina: A scheme for temporal coherency-aware in-network aggregation", in Proc. of the 3rd ACM international workshop on Data engineering for wireless and mobile access(MobiDe'03), pp. 69-76, San Diego, USA, September 2003.