Abstract
When an image is reconstructed by the conventional compressed sensing with random measurement points, most degradation in the reconstructed image occurs in the transient regions. To solve this problem, in this paper, an adaptive compressed sensing that estimates the transient regions in the image and acquires more data at those regions is proposed, which can reconstruct an image with higher quality. The proposed method roughly analyzes the characteristics of image using the randomly-acquired data, acquires additional data at the adaptively-determined points based on the image characteristics, and reconstructs the final image. It is confirmed that with the same number of acquired data, the proposed method reconstructs the image of higher quality than the conventional method.
랜덤 위치에서 데이터를 측정하여 영상을 복원하는 기존의 압축 센싱 방법은 픽셀 값 변화가 심한 영역에서 많은 왜곡을 발생시킨다. 본 논문에서는 이 문제를 해결하기 위하여 영상에서 변화가 심한 영역을 추정하고 해당 영역에서 더 많은 데이터를 측정하여 복원 영상의 품질을 향상시키는 적응적 압축 센싱 기술을 제안한다. 제안한 기술은 랜덤 위치에서 데이터를 측정하여 영상의 대략적인 특성을 분석하고, 영상 특성에 따라 적응적으로 결정된 데이터 측정 위치에서 데이터를 추가로 측정 한 후 최종 영상을 복원하는 과정으로 구성된다. 동일한 수의 측정 데이터에 대하여 제안한 방법이 기존 방법에 비하여 향상된 품질의 영상을 복원하는 것을 확인하였다.