DOI QR코드

DOI QR Code

Gene Cloning and Characterization of a Cold-Adapted Esterase from Acinetobacter venetianus V28

  • Kim, Young-Ok (Biotechnology Research Division, National Fisheries Research and Development Institute) ;
  • Heo, Yu Li (Biotechnology Research Division, National Fisheries Research and Development Institute) ;
  • Kim, Hyung-Kwoun (Division of Biotechnology, The Catholic University of Korea) ;
  • Nam, Bo-Hye (Biotechnology Research Division, National Fisheries Research and Development Institute) ;
  • Kong, Hee Jeong (Biotechnology Research Division, National Fisheries Research and Development Institute) ;
  • Kim, Dong-Gyun (Biotechnology Research Division, National Fisheries Research and Development Institute) ;
  • Kim, Woo-Jin (Biotechnology Research Division, National Fisheries Research and Development Institute) ;
  • Kim, Bong-Seok (Biotechnology Research Division, National Fisheries Research and Development Institute) ;
  • Jee, Young-Ju (Biotechnology Research Division, National Fisheries Research and Development Institute) ;
  • Lee, Sang-Jun (Biotechnology Research Division, National Fisheries Research and Development Institute)
  • 투고 : 2012.01.28
  • 심사 : 2012.04.25
  • 발행 : 2012.09.28

초록

Acinetobacter venetians V28 was isolated from the intestine of righteye flounder, Poecilopsetta plinthus caught in Vietnam seawater, and the esterase gene was cloned using a shotgun method. The amino acid sequence deduced from the nucleotide sequence (1,017 bp) corresponded to a protein of 338 amino acid residues with a molecular weight of 37,186. The esterase had 87% and 72% identities with the lipases of A. junii SH205 and A. calcoaceticus RUH2202, respectively. The esterase contained a putative leader sequence, as well as the conserved catalytic triad (Ser, His, Asp), consensus pentapeptide GXSXG, and oxyanion hole sequence (HG). The protein from the strain V28 was produced in both a soluble and an insoluble form when the Escherichia coli cells harboring the gene were cultured at $18^{\circ}C$. The maximal activity of the purified enzyme was observed at a temperature of $40^{\circ}C$ and pH 9.0 using p-NP-caprylate as substrate; however, relative activity still reached to 70% even at $5^{\circ}C$ with an activation energy of 3.36 kcal/mol, which indicated that it was a cold-adapted enzyme. The enzyme was a nonmetallo-protein and was active against p-nitrophenyl esters of $C_4$, $C_8$, and $C_{14}$. Remarkably, this enzyme retained much of its activity in the presence of commercial detergents and organic solvents. This cold-adapted esterase will be applicable as catalysts for reaction in the presence of organic solvents and detergents.

키워드

참고문헌

  1. Alquati, C., L. Gioia, G. Santarossa, L. Alberghina, P. Fantucci, and M. Lotti. 2002. The cold-adapted lipase of Pseudomonas fragi: Heterologous expression, biochemical characterization and molecular modeling. Eur. J. Biochem. 269: 3321-3328. https://doi.org/10.1046/j.1432-1033.2002.03012.x
  2. Bornscheuer, U. T. 2002. Microbial carboxylesterases: Classification, properties and applications in biocatalysis. FEMS Microbiol. Rev. 26: 73-81. https://doi.org/10.1111/j.1574-6976.2002.tb00599.x
  3. Breuil, C. and D. J. Kushner. 1974. Partial purification and characterization of the lipase of a facultatively psychrophilic bacterium (Acinetobacter O16). Can. J. Microbiol. 21: 434-441.
  4. Chen, S., C. Cheng, and T. Chen. 1998. Production of an alkaline lipase by Acinetobacter radioresistens. Biotechnol. Bioeng. 62: 311-316.
  5. Choo, D. W., T. Kurihara, T. Suzuki, K. Soda, and N. Esaki. 1998. A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11-1: Gene cloning and enzyme purification and characterization. Appl. Environ. Microbiol. 64: 486-491.
  6. De Santi, C., M. L. Tutino, L. Mandrich, M. Giuliani, E. Parrilli, P. Del Vecchio, and D. de Pascale. 2010. The hormonesensitive lipase from Psychrobacter sp. TA144: New insight in the structural/functional characterization. Biochimie 92: 949-957. https://doi.org/10.1016/j.biochi.2010.04.001
  7. Dharmsthiti, S., J. Pratuangdejkul, G. Theeragool, and S. Luchai. 1998. Lipase activity and gene cloning of Acinetobacter calcoaceticus LP009. J. Gen. Appl. Microbiol. 44: 139-145. https://doi.org/10.2323/jgam.44.139
  8. Dieckelmann, M., L. A. Johnson, and I. R. Beacham. 1998. The diversity of lipases from psychrotrophic strains of Pseudomonas: A novel lipase from a highly lipolytic strain of Pseudomonas fluorescens. J. Appl. Microbiol. 85: 527-536. https://doi.org/10.1046/j.1365-2672.1998.853530.x
  9. Feller, G., E. Narinx, J. L. Arpigny, M. Aittaleb, E. Baise, S. Geniot, and C. Gerday. 1996. Enzymes from psychrophilic organisms. FEMS Microbiol. Rev. 18: 189-202. https://doi.org/10.1111/j.1574-6976.1996.tb00236.x
  10. Grochulski, P., Y. Li, J. D. Schrag, F. Bouthillier, P. Smith, D. Harrison, B. Rubin, and M. Cygler. 1993. Insights into interfacial activation from an open structure of Candida rugosa lipase. J. Biol. Chem. 268: 12843-12847.
  11. Hasan, F., A. A. Shah, and A. Hameed. 2006. Industrial applications of microbial lipases. Enzyme Microb. Technol. 39: 235-251. https://doi.org/10.1016/j.enzmictec.2005.10.016
  12. Jaeger, K. E., B. Dijkstra, and M. T. Reetz. 1999. Bacterial biocatalysis: Molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu. Rev. Microbiol. 53: 315-351. https://doi.org/10.1146/annurev.micro.53.1.315
  13. Kim, H. K., H. J. Choi, M. H. Kim, C. B. Sohn, and T. K. Oh. 2002. Expression and characterization of $Ca^{2+}$-independent lipase from Bacillus pumilus B26. Biochim. Biophys. Acta 1583: 205-212. https://doi.org/10.1016/S1388-1981(02)00214-7
  14. Kim, H. E. and K. R. Kim. 2002. Purification and characterization of an esterase from Acinetobacter lwoffii 16C-1. Curr. Microbiol. 44: 401-405. https://doi.org/10.1007/s00284-001-0008-6
  15. Knothe, G. 2005. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol. 86: 1059-1070. https://doi.org/10.1016/j.fuproc.2004.11.002
  16. Kulakova, L., A. Galkin, T. Nakayama, T. Nishino, and N. Esaki. 2004. Cold-active esterase from Psychrobacter sp. Ant300: Gene cloning, characterization, and the effects of GlyPro substitution near the active site on its catalytic activity and stability. Biochim. Biophys. Acta 1696: 59-65. https://doi.org/10.1016/j.bbapap.2003.09.008
  17. Lang, D., B. Hofmann, L. Haalack, H. J. Hecht, F. Spener, R. D. Schmid, and D. Schomburg. 1996. Crystal structure of a bacterial lipase from Chromobacterium viscosum ATCC 6918 refined at 1.6 angstroms resolution. J. Mol. Biol. 259: 704-717. https://doi.org/10.1006/jmbi.1996.0352
  18. Margesin, R. 2007. Alpine microorganisms: Useful tools for low-temperature bioremediation. J. Microbiol. 45: 281-285.
  19. Martinez, C., A. Nicolas, H. van Tilbeurgh, M. P. Egloff, C. Cudrey, R. Verger, and C. Cambillau. 1994. Cutinase, a lipolytic enzyme with a preformed oxyanion hole. Biochemistry 33: 83-89. https://doi.org/10.1021/bi00167a011
  20. Park, I. H., S. H. Kim, Y. S. Lee, S. C. Lee, Y. Zhou, C. M. Kim, et al. 2009. Gene cloning, purification, and characterization of a cold-adapted lipase produced by Acinetobacter baumannii BD5. J. Microbiol. Biotechnol. 19: 128-135. https://doi.org/10.4014/jmb.0802.130
  21. Ryu, H. S., H. K. Kim, W. C. Choi, M. H. Kim, S. Y. Park, N. S. Han, et al. 2006. New cold-adapted lipase from Photobacterium lipolyticum sp. nov. that is closely related to filamentous fungal lipases. Appl. Microbiol. Biotechnol. 70: 321-326. https://doi.org/10.1007/s00253-005-0058-y
  22. Saito, H. and K. I. Miura. 1963. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim. Biophys. Acta. 72: 619-629. https://doi.org/10.1016/0926-6550(63)90386-4
  23. Schmidt, R. D. and R. Verger. 1998. Lipases; interfacial enzymes with attractive applications. Angew Chem. Int. Ed. Engl. 37: 1608-1633. https://doi.org/10.1002/(SICI)1521-3773(19980703)37:12<1608::AID-ANIE1608>3.0.CO;2-V
  24. Schlatmann, J., R. M. Aires-barros, and S. M. J. Cabral. 1991. Esterification of short chain organic acids with alcohols by a lipase microencapsulated in reversed micelles. Biocatal. Biotransform. 5: 137-144. https://doi.org/10.3109/10242429109014862
  25. Suzuki, T., T. Nakayama, D. W. Choo, Y. Hirano, T. Kurihara, T. Nishino, and N. Esaki. 2003. Cloning, heterologous expression, renaturation, and characterization of a cold-adapted esterase with unique primary structure from a psychrotroph Pseudomonas sp. strain B11-1. Protein Expr. Purif. 30: 171-178. https://doi.org/10.1016/S1046-5928(03)00128-1
  26. Suzuki, T., T. Nakayama, T. Kurihara, T. Nishino, and N. Esaki. 2002. Primary structure and catalytic properties of a cold-active esterase from a psychrotroph, Acinetobacter sp. strain no. 6 isolated from Siberian soil. Biosci. Biotechnol. Biochem. 66: 1682-1690. https://doi.org/10.1271/bbb.66.1682
  27. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionsspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  28. Villeneuve, P., J. M. Muderhwa, J. Graille, and M. J. Haas. 2000. Customizing lipases for biocatalysis: A survey of chemical, physical and molecular biological approaches. J. Mol. Catal. B Enzym. 9: 113-148. https://doi.org/10.1016/S1381-1177(99)00107-1
  29. Yang, X., X. Lin, T. Fan, J. Bian, and X. Huang. 2008. Cloning and expression of lipP, a gene encoding a cold-adapted lipase from Moritella sp. 2-5-10-1. Curr. Microbiol. 56: 194-198. https://doi.org/10.1007/s00284-007-9051-2
  30. Zheng, X., X. Chu, W. Zhang, N. Wu, and Y. Fan. 2011. A novel cold-adapted lipase from Acinetobacter sp. XMZ-26: Gene cloning and characterization. Appl. Microbiol. Biotechnol. 90: 971-980. https://doi.org/10.1007/s00253-011-3154-1

피인용 문헌

  1. Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes vol.7, pp.None, 2012, https://doi.org/10.3389/fmicb.2016.01408
  2. Genomic and phenotypic characterization of the species Acinetobacter venetianus vol.6, pp.None, 2016, https://doi.org/10.1038/srep21985
  3. Acinetobacter pittii, an emerging new multi-drug resistant fish pathogen isolated from diseased blunt snout bream (Megalobrama amblycephala Yih) in China vol.101, pp.16, 2012, https://doi.org/10.1007/s00253-017-8392-4
  4. Purification and characterization of a mesophilic organic solvent tolerant lipase produced by Acinetobacter sp. K5b4 vol.37, pp.2, 2019, https://doi.org/10.1080/10242422.2018.1506445