DOI QR코드

DOI QR Code

Identification of Mating Type Loci and Development of SCAR Marker Genetically Linked to the B3 Locus in Pleurotus eryngii

  • Ryu, Jae-San (Eco-friendliness Research Department, Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Kim, Min Keun (Eco-friendliness Research Department, Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Ro, Hyeon-Su (Department of Microbiology and Research Institute for Life Science, Gyeongsang National Univesity) ;
  • Kang, Young Min (Eco-friendliness Research Department, Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Kwon, Jin-Hyeuk (Eco-friendliness Research Department, Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Kong, Won-Sik (Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Lee, Hyun-Sook (Department of Microbiology and Research Institute for Life Science, Gyeongsang National Univesity)
  • Received : 2011.08.30
  • Accepted : 2012.05.16
  • Published : 2012.09.28

Abstract

In order to estimate how diverse the mating types in Pleurotus eryngii from different regions are, pairings between monokaryons derived from inter- and intra-groups were done. Sixteen and 15 alleles were identified at loci A and B from the 12 strains. In the P. eryngii KNR2312, widely used for commercial production, four mating loci, A3, A4, B3, and B4, were determined. Those loci, except A3, were found in 4 strains out of 12 strains. To improve breeding efficiency, especially in mating type determination, RAPD and BSA were performed to screen for a mating type specific marker. The SCAR marker 13-$2_{2100}$ was developed based on the RAPD-derived sequence typing B3 locus. The sequence analysis of 13-$2_{2100}$ revealed that it contained a conserved domain, the STE3 super-family, and consensus sequences like the TATA box and GC box. It seems likely that the SCAR marker region is a part of the pheromone receptor gene.

Keywords

References

  1. Anderson, N. A., G. R. Furneir, A. S. Wang, and J. W. Schwandt. 1991. The number and distribution of incompatibility factors in natural populations of Pleurotus ostreatus and Pleurotus sapidus. Can. J. Bot. 69: 2187-2191. https://doi.org/10.1139/b91-274
  2. Casselton, L. A. and U. Kues. 1994. Mating type genes in Homobasidiomycetes, pp. 213-229. In: Developmental Biology of Higher Fungi. Cambridge University Press, Cambridge.
  3. Eugenio, C. P. and N. A. Anderson. 1968. The genetics and cultivation of Pleurotus ostreatus. Mycologia 60: 627-634. https://doi.org/10.2307/3757430
  4. Giasson, L., C. A. Specht, C. Milgrim, C. P. Novotny, and R. C. Ullrich. 1989. Cloning and comparison of $A{\alpha}$ mating type alleles of the basidiomycete Schizophyllum commune. Mol. Gen. Genet. 218: 72-77. https://doi.org/10.1007/BF00330567
  5. Gioia, D. T., D. Sisto, G. L. Rana, and G. Figliuolo. 2005. Genetic structure of the Pleurotus eryngii species-complex. Mycol. Res. 109: 71-80. https://doi.org/10.1017/S0953756204001637
  6. Hagen, D. C., G. McCaffrey, and G. Sprague. 1986. Evidence the yeast STE3 gene encodes a receptor for the peptide pheromone a factor: Gene sequence and implications for the structure of the presumed receptor. Proc. Natl. Acad. Sci. USA 83: 1418-1422. https://doi.org/10.1073/pnas.83.5.1418
  7. Halsall, J. R., M. J. Lilner, and L. A. Casselton. 2000. Three subfamilies of pheromone and receptor genes generate multiple B mating specificities in the mushroom Coprinus cinereus. Genetics 154: 1115-1123.
  8. Hilber, O. 1982. Die gattung Pleurotus (Fr) Kummer unter besonderer Berucksichtigung des Pleurotus eryngii-Formenkomplexes. Bibl. Mycol. 87: 1-448.
  9. James, T. T., S. R. Liou, and R. Vilgalys. 2004. The genetic structure and diversity of the A and B mating type genes from the tropical oyster mushroom, Pleurotus djamor. Fungal Genet. Biol. 41: 813-825. https://doi.org/10.1016/j.fgb.2004.04.005
  10. Judelson, H. S., L. J. Spielman, and R. Shattock. 1995. Mapping non-Mendelian segregation of mating type loci in the Oomycete, Phytophthora infestans. Genetics 141: 503-512.
  11. Larraya, L. M., M. M. Penas, G. Perez, C. Santos, E. Ritter, A. G. Pisabarro, and L. Ramirez. 1999. Identification of incompatibility alleles and characterization of molecular markers genetically linked to the A incompatibility locus in the white rot fungus Pleurotus ostreatus. Curr. Genet. 34: 486-493. https://doi.org/10.1007/s002940050424
  12. Larraya, L. M., G. Perez, I. Iribarren, J. A. Blanco, M. Alfonso, A. G. Pisabarro, and L. Ramirez. 2001. Relationship between monokaryotic growth rate and mating type in the edible basidiomycete Pleurotus ostreatus. Appl. Environ. Microbiol. 67: 3385-3390. https://doi.org/10.1128/AEM.67.8.3385-3390.2001
  13. Lewinsohn, D., E. Nevo, S. P. Wsser, Y. Hadar, and A. Beharav. 2001. Genetic diversity in populations of the Pleurotus erygii complex in Israel. Mycol. Res. 105: 941-951. https://doi.org/10.1016/S0953-7562(08)61950-4
  14. Marsh, T. L. 1999. Terminal restriction fragment length polymorphism (T-RFLP): An emerging method for characterizing diversity among homologous populations of amplification products. Curr. Opin. Microbiol. 2: 323-327. https://doi.org/10.1016/S1369-5274(99)80056-3
  15. Michelmore, R. W., I. Paran, and R. V. Kessel. 1991. Identification of marker linked to disease-resistance genes by bulked segregation analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA 88: 9828-9832. https://doi.org/10.1073/pnas.88.21.9828
  16. Parag, Y. and Y. Koltin. 1971. The structure of the incompatibility factors of Schizophyllum commune: Constitution of the three classes of B factors. Mol. Gen. Genet. 112: 43-48. https://doi.org/10.1007/BF00266931
  17. Paran, I. and R. W. Michelmore. 1993. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor. Appl. Genet. 85: 985-993.
  18. Raper, J. R. 1966. Genetics of Sexuality in Higher Fungi. Roland Press, New York.
  19. Ro, H. S., S. S. Kim, J. S. Ryu, C. O. Jeon, T. S. Lee, and H. S. Lee. 2007. Comparative studies on the diversity of the edible mushroom Pleurotus eryngii: ITS sequence analysis, RAPD fingerprinting, and physiological characteristics. Mycol. Res. 111: 710-715. https://doi.org/10.1016/j.mycres.2007.03.016
  20. Ryu, J. S., M. K. Kim, J. H. Kwon, S. H. Cho, N. K. Kim, C. W. Lee, et al. 2007. The growth characteristics of Pleurotus eryngii. Korean J. Mycol. 35: 47-53. https://doi.org/10.4489/KJM.2007.35.1.047
  21. Theochari, I. and A. Nikolaou. 2000. Distribution of the mating type alleles in a Greek population of Pleurotus ostreatus, pp. 157-163. In L. J. L. D. Van Griensven (ed.). Science and Cultivation of Edible Fungi. Balkema, Rotterdam.
  22. Urbanelli, S., V. D. Rosa, C. Fanelli, A. A. Fabbri, and M. Reverberi. 2003. Genetic diversity and population structure of the Italian fungi belonging to the taxa Pleurotus eryngii (DC.:Fr) Quel and P. feruae (DC.:Fr.) Quel. Heredity 90: 253-259. https://doi.org/10.1038/sj.hdy.6800239
  23. Wallace, M. M. and S. F. Covert. 2000. Molecular mating type assay for Fusarium circinatum. Appl. Environ. Microbiol. 66: 5506-5508. https://doi.org/10.1128/AEM.66.12.5506-5508.2000
  24. William, J. G. K., A .R. Kubelik, K. J. Livak, J. A. Rafalski, and S. V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535. https://doi.org/10.1093/nar/18.22.6531
  25. Zadrazil, F. 1978. Cultivation of Pleurotus, pp. 521-557. In S. T. Chang and W. A. Hayes (eds.). The Biology and Cultivation of Edible Mushrooms. Academic Press. San Francisco. London.
  26. Zervakis, G. I., G. Venturella, and K. Papadopoulou. 2001. Genetic polymorphism and taxonomic infrastructure of the Pleurotus eryngii species-complex as determined by RAPD analysis, isozyme profiles and ecomorphological characters. Microbiology 147: 3183-3194. https://doi.org/10.1099/00221287-147-11-3183

Cited by

  1. Development of SCAR Markers to Determine the Mating Types of Lepista nuda Protoplast Monokaryons vol.68, pp.4, 2012, https://doi.org/10.1007/s00284-013-0510-7
  2. Identification and Functional Analysis of Pheromone and Receptor Genes in the B3 Mating Locus of Pleurotus eryngii vol.9, pp.8, 2014, https://doi.org/10.1371/journal.pone.0104693
  3. Isolation and Characterization of Monokaryotic Strains of Lentinula edodes Showing Higher Fruiting Rate and Better Fruiting Body Production vol.43, pp.1, 2012, https://doi.org/10.5941/myco.2015.43.1.24
  4. Identification of intralocus recombinants for the mating loci of Lentinula edodes vol.55, pp.6, 2012, https://doi.org/10.1002/jobm.201300313
  5. Characterization of Non-coding Regions in B Mating Loci of Agrocybe salicacola Groups: Target Sites for B Mating Type Identification vol.74, pp.6, 2012, https://doi.org/10.1007/s00284-017-1247-5
  6. A genetic linkage map of Pleurotus tuoliensis integrated with physical mapping of the de novo sequenced genome and the mating type loci vol.19, pp.None, 2018, https://doi.org/10.1186/s12864-017-4421-z
  7. Development of a Molecular Marker Linked to the A4 Locus and the Structure of HD Genes in Pleurotus eryngii vol.47, pp.2, 2012, https://doi.org/10.1080/12298093.2019.1619989