DOI QR코드

DOI QR Code

Detection and Identification of Vibrio Species Using Whole-Cell Protein Pattern Analysis

  • Lee, Chae-Yoon (Department of Food Science & Technology, Ewha Woman's University) ;
  • Hong, Yeun (Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University) ;
  • Ryu, Jio (Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University) ;
  • Kim, Young-Rok (Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University) ;
  • Oh, Sang-Suk (Department of Food Science & Technology, Ewha Woman's University) ;
  • Lee, Soon-Ho (Food Microbiology Division, Korea Food & Drug Administration) ;
  • Hwang, In-Gyun (Food Microbiology Division, Korea Food & Drug Administration) ;
  • Kim, Hae-Yeong (Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University)
  • Received : 2012.01.02
  • Accepted : 2012.03.28
  • Published : 2012.08.28

Abstract

Outbreaks of foodborne diseases associated with Vibrio species such as V. parahaemolyticus, V. vulnificus, and V. cholerae frequently occur in countries having a dietary habit of raw seafood consumption. For rapid identification of different Vibrio species involved in foodborne diseases, whole-cell protein pattern analysis for 13 type strains of 12 Vibrio species was performed using SDS-PAGE analysis. Pathogenic Vibrio species such as V. parahaemolyticus, V. vulnificus, V. cholerae, V. alginolyticus, V. fluvialis, and V. mimicus were included in the 12 Vibrio species used in this study. Each of the 12 Vibrio species showed clearly specific band patterns of its own. Two different strains of V. parahaemolyticus showed two different SDS-PAGE whole-cell protein patterns, giving the possibility of categorizing isolated strains in the same V. parahaemolyticus species into two subgroups. The 36 Vibrio isolates collected from sushi restaurants in Busan were all identified as V. parahaemolyticus by comparing their protein patterns with those of Vibrio type strains. The identified isolates were categorized into two different subgroups of V. parahaemolyticus. The whole-cell protein pattern analysis by SDS-PAGE can be used as a specific, rapid, and simple identification method for Vibrio spp. involved in foodborne diseases at the subspecies level.

Keywords

References

  1. Aguirre-Guzman, G., H. Ruiz, and F. Ascencio. 2004. A review of extracellular virulence product of Vibrio species important in diseases of cultivated shrimp. Aquac. Res. 35: 1395-1404. https://doi.org/10.1111/j.1365-2109.2004.01165.x
  2. Balebona, M. C., M. J. Andreu, M. A. Bordas, I. Zorrilla, M. A. Morinigo, and J. J. Borrego. 1998. Pathogenicity of Vibrio alginolyticus for cultured gilt-head sea bream (Sparusaurata L.). Appl. Environ. Microbiol. 64: 4269-4275.
  3. Beganovi , J., A. Guillot, M. Guchte, A. Jouan, C. Gitton, V. Loux, et al. 2010. Characterization of the insoluble proteome of Lactococcus lactis by SDS-PAGE LC-MS/MS leads to the identification of new markers of adaptation of the bacteria to the mouse digestive tract. J. Proteome Res. 9: 677-688. https://doi.org/10.1021/pr9000866
  4. Bej, A. K., D. P. Patterson, C. W. Brasher, M. C. L. Vickery, D. D. Jones, and C. A. Kaysner. 1999. Detection of total and hemolysin-producing Vibrio parahaemolyticus in shellfish using multiplex PCR amplification of tl, tdh, and trh. J. Microbiol. Methods 36: 215-225. https://doi.org/10.1016/S0167-7012(99)00037-8
  5. Berber, I. 2004. Characterization of Bacillus species by numerical analysis of their SDS-PAGE protein profiles. J. Mol. Cell. Biol. 3: 33-37.
  6. Bisharat, N., V. Agmon, R. Finkelstein, R. Raz, G. Ben-Dror, L. Lemer, et al. 1999. Clinical, epidemiological, and microbiological features of Vibrio vulnificus biogroup 3 causing outbreaks of wound infection and bacteriaemia in Israel. Lancet 354: 1421-1424. https://doi.org/10.1016/S0140-6736(99)02471-X
  7. Chitov, T., P. Kirikaew, P. Yungyune, N. Ruengprapan, and K. Sontikun. 2009. An incidence of large foodborne outbreak associated with Vibrio mimicus. Eur. J. Clin. Microbiol. Infect. Dis. 28: 421-424. https://doi.org/10.1007/s10096-008-0639-7
  8. Chowdhury, M. A., K. M. Aziz, B. A. Kay, and Z. Rahim. 1987. Toxin production by Vibrio mimicus strains isolated from human and environmental sources in Bangladesh. J. Clin. Microbiol. 25: 2200-2203.
  9. Davis, B. R., G. R. Fanning, J. M. Madden, A. G. Steigerwalt, H. B. Bradford Jr, H. L. Smith Jr., and D. J. Brenner. 1981. Characterization of biochemically atypical Vibrio cholerae strains and designation of a new pathogenic species, Vibrio mimicus. J. Clin. Microbiol. 14: 631-639.
  10. Elliott, J. A., M. D. Collins, N. E. Pigott, and R. R. Facklam. 1991. Differentiation of Lactococcus lactis and Lactococcus garvieae from humans by comparison of whole-cell protein patterns. J. Clin. Microbiol. 29: 2731-2734.
  11. Furniss, A. L., J. V. Lee, and T. J. Donovan. 1977. Group F, a new Vibrio. Lancet 2: 565-566.
  12. Goarant, C., F. Merien, F. Berthe, I. Mermoud, and P. Perlat. 1999. Arbitrarily primed PCR to type Vibrio spp. pathogenic for shrimp. Appl. Environ. Microbiol. 9: 1145-1151.
  13. Gomez-Leon, J., L. Villamil, M. L. Lemos, B. Novoa, and A. Figueras. 2005. Isolation of Vibrio alginolyticus and Vibrio splendidus from aquacultured carpet shell clam (Ruditapes decussates) larvae associated with mass mortalities. Appl. Environ. Microbiol. 71: 98-104. https://doi.org/10.1128/AEM.71.1.98-104.2005
  14. Gubala, A. J. 2006. Multiplex real-time PCR detection of Vibrio cholerae. J. Microbiol. Methods 65: 278-293. https://doi.org/10.1016/j.mimet.2005.07.017
  15. Han, F. and B. Ge. 2010. Multiplex PCR assays for simultaneous detection and characterization of Vibrio vulnificus strains. Lett. Appl. Microbiol. 51: 234-240.
  16. Harwood, V. J., J. P. Gandhi, and A. C. Wright. 2004. Methods for isolation and confirmation of Vibrio vulnificus from oysters and environmental sources: A review. J. Microbiol. Methods 59: 301-316. https://doi.org/10.1016/j.mimet.2004.08.001
  17. Honda, T., Y. X. Ni, and T. Miwatani. 1988. Purification and characterization of a hemolysin produced by a clinical isolate of Kanagawa phenomenon-negative Vibrio parahaemolyticus and related to the thermostable direct hemolysin. Infect. Immun. 56: 961-965.
  18. Howard, R., B. Brennaman, and S. Lieb. 1986. Soft tissue infections in Florida due to marine Vibrio bacteria. J. Fla. Med. Assoc. 73: 29-34.
  19. Iguchi, T., S. Kondo, and K. Hisatsune. 2006. Vibrio parahaemolyticus O serotypes from O1 to O13 all produce Rtype lipopolysaccharide: SDS-PAGE and compositional sugar analysis. FEMS Microbiol. Lett. 130: 287-292.
  20. Kim, T. W., J. Y. Lee, S. H. Jung, Y. M. Kim, J. S. Jo, D. K. Chung, H. J. Lee, and H. Y. Kim. 2002. Identification and distribution of predominant lactic acid bacteria in kimchi, a Korean traditional fermented food. J. Microbiol. Biotechnol. 12: 635-642.
  21. Kim, Y. B., J. Okuda, C. Matsumoto, N. Takahashi, S. Hashimoto, and M. Nishibushi. 1999. Identification of Vibrio parahaemolyticus strains at the species level by PCR targeted to the toxR gene. J. Clin. Microbiol. 37: 1173-1177.
  22. Korea Food & Drug Administration. 2011. Foodborne disease statistical system. Available from http://e-stat.kfda.go.kr.
  23. Korea Food & Drug Administration. 2010. Real-time PCR method manual for detection of foodborne pathogens.
  24. Korean Ministry for Food, Agriculture, Forestry and Fisheries. 2008. Seafood safety information system. Available from http://fsis.go.kr.
  25. Kothary, M. H. and A. S. Kreger. 1987. Purification and characterization of an elastolytic protease of Vibrio vulnificus. J. Microbiol. 133: 1783-1791. https://doi.org/10.1099/00221287-133-7-1783
  26. Kothary, M. H., H. Lowman, B. A. McCardell, and B. D. Tall. 2003. Purification and characterization of enterotoxigenic El Tor-like haemolysin produced by Vibrio fluvialis. Infect. Immun. 71: 3213-3220. https://doi.org/10.1128/IAI.71.6.3213-3220.2003
  27. Lightner, D. V. 1996. A Handbook of Pathology and Diagnostic Procedures for Diseases of Penaeid Shrimps. World Aquaculture Society, Baton Rouge, Lousiana, USA.
  28. Litwin, C. M. and B. L. Byrne. 1998. Cloning and characterization of an outer membrane protein of Vibrio vulnificus required for heme utilization: Regulation of expression and determination of the gene sequence. Infect. Immun. 66: 3134-3141.
  29. Liu, W. L., Y. H. Chiu, C. M. Chao, C. C. Hou, and C. C. Lai. 2011. Biliary tract infection caused by Vibrio fluvialis in an immunocompromised patient. J. Infect. 39: 495-496. https://doi.org/10.1007/s15010-011-0146-0
  30. Marhual, N. P., B. K. Das, J. Pradhan, P. Swain, B. K. Mishra, and E. Amberkar Eknath. 2012. RAPD-PCR and outer membrane protein characterization of Vibrio alginolyticus and V. parahaemolyticus isolated from diseased shrimp. Israeli J. Aquacult. [In Press].
  31. Oliver, J. D. 2005. Wound infections caused by Vibrio vulnificus and other marine bacteria. Epidemiol. Infect. 133: 383-391. https://doi.org/10.1017/S0950268805003894
  32. Peel, M., W. Donachie, and A. Shaw. 1988. Temperaturedependent expression of flagella of Listeria monocytogenes studied by electron microscopy, SDS-PAGE and Western blotting. J. Microbiol. 134: 2171-2178. https://doi.org/10.1099/00221287-134-8-2171
  33. Rippey, S. R. 1994. Infectious diseases associated with molluscan shellfish consumption. Clin. Microbiol. Rev. 7: 419-425.
  34. Sanjuan, E. and C. Amaro. 2007. Multiplex PCR assay for detection of Vibrio vulnificus biotype 2 and simultaneous discrimination of serovar E strains. Appl. Environ. Microbiol. 73: 2029-2032. https://doi.org/10.1128/AEM.02320-06
  35. Shah, P. D. and S. Deokule. 2006. Isolation of Vibrio mimicus from a case of acute diarrhea - a case report. Indian J. Pathol. 49: 455-456.
  36. Sneath, P. H. A. and R. R. Sokal. 1973. Numerical Taxonomy: The Principles and Practice of Numerical Classification. W. H. Freeman, San Francisco, California, USA.
  37. Song, B. K., M. M. Clyde, R. Wickneswari, and M. N. Normah. 2000. Genetic relatedness among Lansium domesticum accessions using RAPD markers. Ann. Bot. 86: 299-307. https://doi.org/10.1006/anbo.2000.1186
  38. Su, Y. C. and C. C. Liu. 2007. Vibrio parahaemolyticus: A concern of seafood safety. Food Microbiol. 24: 549-558. https://doi.org/10.1016/j.fm.2007.01.005
  39. Tall, B. D., S. Fall, M. R. Pereira, M. Ramos-Valle, S. K. Curtis, M. H. Kothary, et al. 2003. Characterization of Vibrio fluvialis-like strains implicated in limp lobster disease. Appl. Environ. Microbiol. 69: 7435-7446. https://doi.org/10.1128/AEM.69.12.7435-7446.2003
  40. US Food and Drug Administration. 2004. Bacteriological Analytical Manual. Chapter 9: Vibrio. Available from http://www.fda.gov.
  41. Vandamme, P., U. Torck, T. Falsen, B. Pot, H. Goossens, and K. Kersters. 1998. Whole-cell protein electrophoretic analysis of viridians streptococci: Evidence for heterogeneity among Streptococcus mitis biovars. Int. J. Syst. Evol. Microbiol. 48: 117-125.
  42. Venkateswaran, K., N. Dohmoto, and S. Harayama. 1998. Cloning and nucleotide sequence of the gyrB gene of Vibrio parahaemolyticus and its application in detection of this pathogen in shrimp. Appl. Environ. Microbiol. 64: 681-687.
  43. Villani, F., G. Moschetti, G. Blaiotta, and S. Coppola. 1997. Characterization of strains of Leuconostoc mesenteroides by analysis of soluble whole-cell protein pattern, DNA fingerprinting and restriction of ribosomal DNA. J. Appl. Microbiol. 82: 578-588.
  44. Vora, G., C. E. Meador, M. M. Bird, C. A. Bopp, J. D. Andreadis, and D. A. Stenger. 2005. Microarray-based detection of genetic heterogeneity, antimicrobial resistance, and the viable but nonculturable state in human pathogenic Vibrio spp. Proc. Natl. Acad. Sci. USA 102: 19109-19114. https://doi.org/10.1073/pnas.0505033102
  45. Yoder, J. S., M. C. Hlavsa, G. F. Craun, V. Hill, V. Roberts, P. A. Yu, et al. 2008. Surveillance for waterborne disease and outbreaks associated with recreational water use and other aquatic facility-associated health events - United States, 2005-2006. MMWR Surveill. Summ. 57: 1-29.
  46. Young, N., Z. Chang, and D. S. Wishart. 2004. GelScape: A Web-based server for interactively annotating, manipulating, comparing and archiving 1D and 2D gel images. Bioinformatics 20: 976-978. https://doi.org/10.1093/bioinformatics/bth033

Cited by

  1. Proteomics in environmental and technical microbiology vol.14, pp.1, 2012, https://doi.org/10.1002/elsc.201200205
  2. Identification of Lactic Acid Bacteria in Pork Meat and Pork Meat Products Using SDS‐PAGE, 16S rRNA Gene Sequencing and MALDI‐TOF Mass Spectrometry vol.34, pp.3, 2012, https://doi.org/10.1111/jfs.12117
  3. Vibrio fluvialis : an emerging human pathogen vol.5, pp.None, 2012, https://doi.org/10.3389/fmicb.2014.00091
  4. Bacterial Whole Cell Protein Profiling: Methodology, Applications and Constraints vol.16, pp.2, 2012, https://doi.org/10.2174/1570164615666180905102253