DOI QR코드

DOI QR Code

Protein Tyrosine Phosphatase Profiling Analysis of HIB-1B Cells during Brown Adipogenesis

  • Received : 2011.12.27
  • Accepted : 2012.02.20
  • Published : 2012.07.28

Abstract

A number of evidence have been accumulated that the regulation of reversible tyrosine phosphorylation, which can be regulated by the combinatorial activity of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), plays crucial roles in various biological processes including differentiation. There are a total of 107 PTP genes in the human genome, collectively referred to as the "PTPome." In this study, we performed PTP profiling analysis of the HIB-1B cell line, a brown preadipocyte cell line, during brown adipogenesis. Through RT-PCR and real-time PCR, several PTPs showing differential expression pattern during brown adipogenesis were identified. In the case of PTP-RE, it was shown to decrease significantly until 4 days after brown adipogenic differentiation, followed by a dramatic increase at 6 days. The overexpression of PTP-RE led to decreased brown adipogenic differentiation via reducing the tyrosine phosphorylation of the insulin receptor, indicating that PTP-RE functions as a negative regulator at the early stage of brown adipogenesis.

Keywords

References

  1. Aga-Mizarachi, S., T. Brutman-Barazani, A. I. Jacob, A. Bak, A. Elson, and S. R. Sampson. 2008. Cytosolic protein tyrosine phosphatase-epsilon is a negative regulator of insulin signaling in skeletal muscle. Endocrinology 149: 605-614.
  2. Alonso, A., J. Sasin, N. Bottini, I. Friedberg, A. Osterman, A. Godzik, et al. 2004. Protein tyrosine phosphatases in the human genome. Cell 117: 699-711. https://doi.org/10.1016/j.cell.2004.05.018
  3. Blume-Jensen, P. and T. Hunter. 2001. Oncogenic kinase signalling. Nature 411: 355-365. https://doi.org/10.1038/35077225
  4. Glondu-Lassis, M., M. Dromard, C. Chavey, C. Puech, L. Fajas, W. Hendriks, et al. 2009. Downregulation of protein tyrosine phosphatase PTP-BL represses adipogenesis. Int. J. Biochem. Cell Biol. 41: 2173-2180. https://doi.org/10.1016/j.biocel.2009.04.004
  5. Hunter, T. 1987. A thousand and one protein kinases. Cell 50: 823-829. https://doi.org/10.1016/0092-8674(87)90509-5
  6. Hunter, T. 1998. The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine: Its role in cell growth and disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353: 583-605. https://doi.org/10.1098/rstb.1998.0228
  7. Jung, H., W. K. Kim, D. H. Kim, Y. S. Cho, S. J. Kim, S. G. Park, et al. 2009. Involvement of PTP-RQ in differentiation during adipogenesis of human mesenchymal stem cells. Biochem. Biophys. Res. Commun. 383: 252-257. https://doi.org/10.1016/j.bbrc.2009.04.001
  8. Kim, W. K., H. Jung, D. H. Kim, E. Y. Kim, J. W. Chung, Y. S. Cho, et al. 2009. Regulation of adipogenic differentiation by LAR tyrosine phosphatase in human mesenchymal stem cells and 3T3-L1 preadipocytes. J. Cell Sci. 122: 4160-4167. https://doi.org/10.1242/jcs.053009
  9. Kim, W. K., H. Jung, E. Y. Kim, D. H. Kim, Y. S. Cho, B. C. Park, et al. 2011. $RPTP{\mu}$ Tyrosine phosphatase promotes adipogenic differentiation via modulation of p120 catenin phosphorylation. Mol. Biol. Cell 22: 4883-4891. https://doi.org/10.1091/mbc.E11-03-0175
  10. Klaus, S., L. O. Choy, A.-M. Champigny, S. Cassard-Doulcier, B. Ross, B. M. Spiegelman, et al. 1994. Characterization of the novel brown adipocyte cell line HIB 1B. J. Cell Sci. 107: 313-319
  11. Mustelin, T., G. S. Feng, N. Bottini, A. Alonso, N. Kholod, D. Birle, et al. 2002. Protein tyrosine phosphatases. Front. Biosci. 7: 85-142.
  12. Ostman, A., C. Hellberg, and F. D. Bohmer. 2006. Proteintyrosine phosphatases and cancer. Nat. Rev. Cancer 6: 307-320. https://doi.org/10.1038/nrc1837
  13. Rosen, E. D. and O. A. MacDougald. 2006. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol. 7: 885-896.
  14. Seale, P., S. Kajimura, and B. M. Spiegelman. 2009. Transcriptional control of brown adipocyte development and physiological function of mice and men. Genes Dev. 23: 788-797. https://doi.org/10.1101/gad.1779209
  15. Sell, H., Y. Deshaies, and D. Richard. 2004. The brown adipocyte: Update on its metabolic role. Int. J. Biochem. Cell Biol. 36: 2098-2104. https://doi.org/10.1016/j.biocel.2004.04.003
  16. Tsai, J., Q. Tong, G. Tan, A. N. Chang, S. H. Orkin, and G. S. Hotamisligil. 2005. The transcription factor GATA2 regulates differentiation of brown adipocytes. EMBO J. 6: 879-884. https://doi.org/10.1038/sj.embor.7400490
  17. Neel, B. G., and N. K. Tonks. 1997. Protein tyrosine phosphatases in signal transduction. Curr. Opin. Cell Biol. 9: 193-204. https://doi.org/10.1016/S0955-0674(97)80063-4
  18. Ostman, A, and F. D. Bohmer. 2001. Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatases. Trends Cell Biol. 11: 258-266. https://doi.org/10.1016/S0962-8924(01)01990-0
  19. Siu, R., C. Fladd, and D. Rotin. 2007. N-Cadherin is an in vivo substrate for protein tyrosine phosphatase sigma $(PTP{\sigma})$ and participates in PTPs-mediated inhibition of axon growth. Mol. Cell Biol. 27: 208-219. https://doi.org/10.1128/MCB.00707-06
  20. Bence, K. K., M. Delibegovic, B. Xue, C. Z. Gorgun, G. S. Hotamisligil, B. G. Neel, et al. 2006. Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat. Med. 12: 917-924 https://doi.org/10.1038/nm1435
  21. Cinti, S. 2005. The adipose organ. Prostaglandins Leukot. Essent. Fatty Acids 73: 9-15. https://doi.org/10.1016/j.plefa.2005.04.010
  22. Gregoire, F. M., C. M. Smas, and H. S. Sul. 1998. Understanding adipocyte differentiation. Physiol. Rev. 78: 783-809.
  23. Hausman, D. B., M. DiGirolamo, T. J. Bartness, G. J. Hausman, and R. J. Martin. 2001. The biology of white adipocyte proliferation. Obes. Rev. 2: 239-254. https://doi.org/10.1046/j.1467-789X.2001.00042.x
  24. Cannon, B. and J. Nedergaard. 2004. Brown adipose tissue: Function and physiological significance. Physiol. Rev. 84: 277-359 https://doi.org/10.1152/physrev.00015.2003
  25. Andersen, J. N., A. Elson, R. Lammers, J. Romer, J. T. Clausen, K. B. Moller, et al. 2001. Comparative study of protein tyrosine phosphatase-epsilon isoforms: Membranes localization confers specificity in cellular signaling. Biochem. J. 354: 581-590. https://doi.org/10.1042/0264-6021:3540581
  26. Tonks, N. K. 2006. Protein tyrosine phosphatases: From genes, to function, to disease. Nat. Rev. Mol. Cell Biol. 7: 833-846. https://doi.org/10.1038/nrm2039
  27. Krueger, N. X., M. Streuli, and H. Saito. 1990. Structural diversity and evolution of human receptor-like protein tyrosine phosphatases. EMBO J. 9: 3241-3252.
  28. Gil-Henn, H., G. Volohonsky, and A. Elson. 2001. Regulation of $RPTP{\alpha}$ and $PTP{\varepsilon}$ by calpain-mediated proteolytic cleavage. J. Biol. Chem. 276: 31772-31779. https://doi.org/10.1074/jbc.M103395200

Cited by

  1. Clostridium difficile Toxin A Inhibits Erythropoietin Receptor-Mediated Colonocyte Focal Adhesion Through Inactivation of Janus Kinase-2 vol.22, pp.12, 2012, https://doi.org/10.4014/jmb.1207.07063
  2. Involvement of protein tyrosine phosphatases in adipogenesis: New anti-obesity targets? vol.45, pp.12, 2012, https://doi.org/10.5483/bmbrep.2012.45.12.235
  3. Dual-Specificity Phosphatase 10 Controls Brown Adipocyte Differentiation by Modulating the Phosphorylation of P38 Mitogen-Activated Protein Kinase vol.8, pp.8, 2012, https://doi.org/10.1371/journal.pone.0072340
  4. Protein tyrosine phosphatase profiling studies during brown adipogenic differentiation of mouse primary brown preadipocytes vol.46, pp.11, 2012, https://doi.org/10.5483/bmbrep.2013.46.11.058
  5. Sex-Dependent Expression of Caveolin 1 in Response to Sex Steroid Hormones Is Closely Associated with Development of Obesity in Rats vol.9, pp.3, 2012, https://doi.org/10.1371/journal.pone.0090918
  6. Recent Advances in Proteomic Studies of Adipose Tissues and Adipocytes vol.16, pp.3, 2012, https://doi.org/10.3390/ijms16034581