DOI QR코드

DOI QR Code

Evaluation of Yeast Diversity During Wine Fermentations with Direct Inoculation and pied de cuve Method at an Industrial Scale

  • Li, Erhu (College of Food Science and Technology, Huazhong Agricultural University) ;
  • Liu, Chuanhe (College of Enology, Northwest A&F University/ Research Centre for Viti-Viniculture of Shaanxi Province) ;
  • Liu, Yanlin (College of Enology, Northwest A&F University/ Research Centre for Viti-Viniculture of Shaanxi Province)
  • Received : 2011.11.07
  • Accepted : 2012.02.27
  • Published : 2012.07.28

Abstract

The diversity and composition of yeast populations may greatly impact wine quality. This study investigated the yeast microbiota in two different types of wine fermentations: direct inoculation of a commercial starter versus pied de cuve method at an industrial scale. The pied de cuve fermentation entailed growth of the commercial inoculum used in the direct inoculation fermentation for further inoculation of additional fermentations. Yeast isolates were collected from different stages of wine fermentation and identified to the species level using Wallersterin Laboratory nutrient (WLN) agar followed by analysis of the 26S rDNA D1/D2 domain. Genetic characteristics of the Saccharomyces cerevisiae strains were assessed by a rapid PCR-based method, relying on the amplification of interdelta sequences. A total of 412 yeast colonies were obtained from all fermentations and eight different WL morphotypes were observed. Non-Saccharomyces yeast mainly appeared in the grape must and at the early stages of wine fermentation. S. cerevisiae was the dominant yeast species using both fermentation techniques. Seven distinguishing interdelta sequence patterns were found among S. cerevisiae strains, and the inoculated commercial starter, AWRI 796, dominated all stages in both direct inoculation and pied de cuve fermentations. This study revealed that S. cerevisiae was the dominant species and an inoculated starter could dominate fermentations with the pied de cuve method under controlled conditions.

Keywords

References

  1. Andrighetto, C., E. Psomas, N. Tzanetakis, G. Suzzi, and A. Lombardi. 2000. Randomly amplified polymorphic DNA (RAPD) PCR for the identification of yeasts isolated from dairy products. Lett. Appl. Microbiol. 30: 5-9. https://doi.org/10.1046/j.1472-765x.2000.00589.x
  2. Capece, A., R. Romaniello, C. Poeta, G. Siesto, C. Massari, R. Pietrafesa, and P. Romano. 2011. Control of inoculated fermentations in wine cellars by mitochondrial DNA analysis of starter yeast. Ann. Microbiol. 61: 49-56. https://doi.org/10.1007/s13213-010-0087-3
  3. Capece, A., R. Romaniello, G. Siesto, R. Pietrafesa, C. Massari, C. Poeta, and P. Romano. 2010. Selection of indigenous Saccharomyces cerevisiae strains for Nero d'Avola wine and evaluation of selected starter implantation in pilot fermentation. Int. J. Food Microbiol. 144: 187-192. https://doi.org/10.1016/j.ijfoodmicro.2010.09.009
  4. Clavijo, A., I. L. Calderon, and P. Paneque. 2011. Yeast assessment during alcoholic fermentation inoculated with a natural "pied de cuve" or a commercial yeast strain. World J. Microbiol. Biotechnol. 27: 1569-1577. https://doi.org/10.1007/s11274-010-0609-y
  5. Corte, L., M. Lattanzi, P. Buzzini, A. Bolano, F. Fatichenti, and G. Cardinali. 2005. Use of RAPD and killer toxin sensitivity in Saccharomyces cerevisiae strain typing. J. Appl. Microbiol. 99: 609-617. https://doi.org/10.1111/j.1365-2672.2005.02631.x
  6. Csoma, H., N. Zakany, A. Capece, P. Romano, and M. Sipiczki. 2010. Biological diversity of Saccharomyces yeasts of spontaneously fermenting wines in four wine regions: Comparative genotypic and phenotypic analysis. Int. J. Food Microbiol. 140: 239-248. https://doi.org/10.1016/j.ijfoodmicro.2010.03.024
  7. Fernandez-Espinar, M. T., B. Esteve-Zarzoso, A. Querol, and E. Barrio. 2000. RFLP analysis of the ribosomal internal transcribed spacers and the 5.8S rRNA gene region of the genus Saccharomyces: A fast method for species identification and the differentiation of flor yeasts. Antonie Van Leeuwenhoek 78: 87-97. https://doi.org/10.1023/A:1002741800609
  8. Fleet, G. H. 2003. Yeast interactions and wine flavour. Int. J. Food Microbiol. 86: 11-22. https://doi.org/10.1016/S0168-1605(03)00245-9
  9. Fleet, G. H. 2008. Wine yeasts for the future. FEMS Yeast Res. 8: 979-995. https://doi.org/10.1111/j.1567-1364.2008.00427.x
  10. Howell, K. S., E. J. Bartowsky, G. H. Fleet, and P. A. Henschke. 2004. Microsatellite PCR profiling of Saccharomyces cerevisiae strains during wine fermentation. Lett. Appl. Microbiol. 38: 315-320. https://doi.org/10.1111/j.1472-765X.2004.01486.x
  11. Iranzo, J. F. U., F. G. Magana, and M. A. G. Vinas. 2000. Evaluation of the formation of volatiles and sensory characteristics in the industrial production of white wines using different commercial strains of the genus Saccharomyces. Food Control 11: 143-147. https://doi.org/10.1016/S0956-7135(99)00086-9
  12. Juhasz, A., H. Engi, I. Pfeiffer, J. Kucsera, C. Vagvolgyi, and Z. Hamari. 2007. Interpretation of mtDNA RFLP variability among Aspergillus tubingensis isolates. Antonie Van Leeuwenhoek 91: 209-216. https://doi.org/10.1007/s10482-006-9110-x
  13. Kurtzman, C. P. and C. J. Robnett. 1998. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73: 331-371. https://doi.org/10.1023/A:1001761008817
  14. Le Jeune, C., C. Erny, C. Demuyter, and M. Lollier. 2006. Evolution of the population of Saccharomyces cerevisiae from grape to wine in a spontaneous fermentation. Food Microbiol. 23: 709-716. https://doi.org/10.1016/j.fm.2006.02.007
  15. Legras, J. L. and F. Karst. 2003. Optimisation of interdelta analysis for Saccharomyces cerevisiae strain characterisation. FEMS Microbiol. Lett. 221: 249-255. https://doi.org/10.1016/S0378-1097(03)00205-2
  16. Li, E., A. Liu, B. Xue, and Y. Liu. 2011. Yeast species associated with spontaneous wine fermentation of Cabernet Sauvignon from Ningxia, China. World J. Microbiol. Biotechnol. 27: 2475-2482. https://doi.org/10.1007/s11274-011-0711-9
  17. Lopandic, K., W. Tiefenbrunner, H. Gangl, K. Mandl, S. Berger, G. Leitner, et al. 2008. Molecular profiling of yeasts isolated during spontaneous fermentations of Austrian wines. FEMS Yeast Res. 8: 1063-1075. https://doi.org/10.1111/j.1567-1364.2008.00385.x
  18. Lopes, C. A., T. L. Lavalle, A. Querol, and A. C. Caballero. 2006. Combined use of killer biotype and mtDNA-RFLP patterns in a Patagonian wine Saccharomyces cerevisiae diversity study. Antonie Van Leeuwenhoek 89: 147-156. https://doi.org/10.1007/s10482-005-9017-y
  19. Lopez, V., M. T. Fernandez-Espinar, E. Barrio, D. Ramon, and A. Querol. 2003. A new PCR-based method for monitoring inoculated wine fermentations. Int. J. Food Microbiol. 81: 63-71. https://doi.org/10.1016/S0168-1605(02)00194-0
  20. Ness, F., F. LavallAce, D. Dubourdieu, M. Aigle, and L. Dulau. 1993. Identification of yeast strains using the polymerase chain reaction. J. Sci. Food Agric. 62: 89-94. https://doi.org/10.1002/jsfa.2740620113
  21. Ocon, E., A. R. Gutierrez, P. Garijo, C. Tenorio, I. Lopez, R. Lopez, and P. Santamaria. 2010. Quantitative and qualitative analysis of non-Saccharomyces yeasts in spontaneous alcoholic fermentations. Eur. Food Res. Technol. 230: 885-891. https://doi.org/10.1007/s00217-010-1233-7
  22. Pallmann, C. L., J. A. Brown, T. L. Olineka, L. Cocolin, D. A. Mills, and L. F. Bisson. 2001. Use of WL medium to profile native flora fermentations. Am. J. Enol. Viticult. 52: 198-203.
  23. Perez-Coello, M. S., A. I. B. Perez, J. F. U. Iranzo, and P. J. M. Alvarez. 1999. Characteristics of wines fermented with different Saccharomyces cerevisiae strains isolated from the La Mancha region. Food Microbiol. 16: 563-573. https://doi.org/10.1006/fmic.1999.0272
  24. Querol, A., E. Barrio, T. Huerta, and D. Ramon. 1992. Molecular monitoring of wine fermentations conducted by active dry yeast strains. Appl. Environ. Microbiol. 58: 2948-2953.
  25. Quesada, M. P. and J. L. Cenis. 1995. Use of random amplified polymorphic DNA (RAPD-PCR) in the characterization of wine yeasts. Am. J. Enol. Viticult. 46: 204-208.
  26. Renouf, V., C. Miot-Sertier, P. Strehaiano, and A. Lonvaud- Funel. 2006. The wine microbial consortium: A real terroir characteristic. J. Int. Sci. Vigne Vin 40: 209-216.
  27. Santamaria, P., P. Garijo, R. Lopez, C. Tenorio, and A. R. Gutierrez. 2005. Analysis of yeast population during spontaneous alcoholic fermentation: Effect of the age of the cellar and the practice of inoculation. Int. J. Food Microbiol. 103: 49-56. https://doi.org/10.1016/j.ijfoodmicro.2004.11.024
  28. Schuller, D. and M. Casal. 2007. The genetic structure of fermentative vineyard-associated Saccharomyces cerevisiae populations revealed by microsatellite analysis. Antonie Van Leeuwenhoek 91: 137-150. https://doi.org/10.1007/s10482-006-9104-8
  29. Schuller, D., E. Valero, S. Dequin, and M. Casal. 2004. Survey of molecular methods for the typing of wine yeast strains. FEMS Microbiol. Lett. 231: 19-26. https://doi.org/10.1016/S0378-1097(03)00928-5
  30. Techera, A. G., S. Jubany, F. M. Carrau, and C. Gaggero. 2001. Differentiation of industrial wine yeast strains using microsatellite markers. Lett. Appl. Microbiol. 33: 71-75. https://doi.org/10.1046/j.1472-765X.2001.00946.x
  31. Torija, M. J., N. Rozes, M. Poblet, J. M. Guillamon, and A. Mas. 2001. Yeast population dynamics in spontaneous fermentations: Comparison between two different wine-producing areas over a period of three years. Antonie Van Leeuwenhoek 79: 345-352. https://doi.org/10.1023/A:1012027718701
  32. Torriani, S., G. Zapparoli, and G. Suzzi. 1999. Genetic and phenotypic diversity of Saccharomyces sensu stricto strains isolated from Amarone wine-Diversity of Saccharomyces strains from Amarone wine. Antonie Van Leeuwenhoek 75: 207-215. https://doi.org/10.1023/A:1001773916407
  33. Verbelen, P., S. Saerens, S. Van Mulders, and F. Delvaux. 2009. The role of oxygen in yeast metabolism during high cell density brewery fermentations. Appl. Microbiol. Biotechnol. 82: 1143-1156. https://doi.org/10.1007/s00253-009-1909-8
  34. Xufre, A., H. Albergaria, F. Girio, and I. Spencer-Martins. 2011. Use of interdelta polymorphisms of Saccharomyces cerevisiae strains to monitor population evolution during wine fermentation. J. Ind. Microbiol. Biotechnol. 38: 127-132. https://doi.org/10.1007/s10295-010-0837-z
  35. Xufre, A., F. Simoes, F. Girio, A. Clemente, and M. T. Amaral- Collaco. 2000. Use of RAPD analysis for differentiation among six enological Saccharomyces spp. strains. Food Technol. Biotechnol. 38: 53-58.
  36. Zott, K., C. Miot-Sertier, O. Claisse, A. Lonvaud-Funel, and I. Masneuf-Pomarede. 2008. Dynamics and diversity of non-Saccharomyces yeasts during the early stages in winemaking. Int. J. Food Microbiol. 125: 197-203. https://doi.org/10.1016/j.ijfoodmicro.2008.04.001

Cited by

  1. Dynamics of Saccharomyces cerevisiae populations in controlled and spontaneous fermentations for Franciacorta D.O.C.G. base wine production vol.64, pp.2, 2012, https://doi.org/10.1007/s13213-013-0697-7
  2. The Wine: Typicality or Mere Diversity? The Effect of Spontaneous Fermentations and Biotic Factors on the Characteristics of Wine vol.8, pp.None, 2012, https://doi.org/10.1016/j.aaspro.2016.02.064
  3. Effect of Biofilm Formation by Oenococcus oeni on Malolactic Fermentation and the Release of Aromatic Compounds in Wine vol.7, pp.None, 2012, https://doi.org/10.3389/fmicb.2016.00613
  4. Use of fortified pied de cuve as an innovative method to start spontaneous alcoholic fermentation for red winemaking vol.22, pp.1, 2012, https://doi.org/10.1111/ajgw.12166
  5. Effect of the mechanical harvest of drupes on the quality characteristics of green fermented table olives vol.96, pp.6, 2012, https://doi.org/10.1002/jsfa.7311
  6. Saccharomyces IDentifier, S ID: strain-level analysis of Saccharomyces cerevisia e populations by using microsatellite meta-patterns vol.7, pp.None, 2012, https://doi.org/10.1038/s41598-017-15729-3
  7. Chemical Transfers Occurring Through Oenococcus oeni Biofilm in Different Enological Conditions vol.6, pp.None, 2019, https://doi.org/10.3389/fnut.2019.00095
  8. Colonization of Wild Saccharomyces cerevisiae Strains in a New Winery vol.6, pp.1, 2012, https://doi.org/10.3390/beverages6010009
  9. Diversity of non-Saccharomyces yeasts of grape berry surfaces from representative Cabernet Sauvignon vineyards in Henan Province, China vol.368, pp.20, 2012, https://doi.org/10.1093/femsle/fnab142