DOI QR코드

DOI QR Code

16S rRNA Gene Sequence-based Microbial Diversity Analyses of the Geothermal Areas of Cisolok, Kamojang, and Likupang in Indonesia

16S rRNA 분석을 통한 인도네시아의 Cisolok, Kamojang, Likupang 지열지대 내 미생물 다양성 분석

  • Seo, Myung-Ji (Fermentation and Functionality Research Group, Korea Food Research Institute (KFRI)) ;
  • Kim, Jeong-Nyeo (Department of Biotechnology, Yonsei University) ;
  • Pyun, Yu-Ryang (Department of Biotechnology, Yonsei University)
  • 서명지 (한국식품연구원 발효기능연구단) ;
  • 김정녀 (연세대학교 생명공학과) ;
  • 변유량 (연세대학교 생명공학과)
  • Received : 2012.05.03
  • Accepted : 2012.07.11
  • Published : 2012.09.28

Abstract

Microbial diversity analyses were performed in several geothermal areas in Indonesia using a culture-independent approach with 16S rRNA gene sequencing. All areas and the majority of samples were noted as being affiliated with Proteobacteria. In addition, unclassified bacteria with no phylum affiliation were detected at an incidence rate of 20.0-26.5% in every location. The majority groupings in the geothermal hot stream in Cisolok belonged to ${\beta}$-Proteobacteria (27.1%) and Cyanobacteria (11.0%), whereas the majority from the volcanic area in Kamojang was ${\gamma}$-Proteobacteria (51.5%) followed by Aquificales (12.9%). The predominant groups around an underwater thermal vent in the sea at Likupang were ${\gamma}$-Proteobacteria (33.3%) and then Bacteroidetes (27.6%). This detailed microbial community analyses of each area strongly support a possible association with plausible community groups and environmental habitats, such as extremely geothermal or marine habitats. This study has significantly contributed to the expansion of scientific knowledge of the microbial community in Indonesia.

인도네시아 지열지대의 미생물 다양성을 16S rRNA 염기서열 분석을 통해 조사하였다. 전체적으로 어떠한 phylum 계통군에도 포함되지 않는 unclassified bacteria가 20.0-26.5% 존재하였으며 sampling 지역에 상관없이 Proteobacteria가 우점 phylum 계통군으로 나타났다. Cisolok 주변의 지열 지역을 조사한 결과 ${\beta}$-Proteobacteria (27.1%)와 Cyanobacteria (11.0%)가 높은 비율을 차지한 반면 Kamojang의 화산 주변 지역의 경우에는 ${\gamma}$-Proteobacteria (51.5%) 그리고 Aquificales (12.9%)가 우점 계통군으로 나타났다. 또한 Likupang 열수구의 경우에는 ${\gamma}$-Proteobacteria (33.3%)와 Bacteroidetes (27.6%)가 높은 비율로 나타났다. 본 연구를 통해 인도네시아 각 지열지대에 분포하는 미생물 군집은 각 지역의 환경적인 특징 (극한 지열 및 해양 서식지)과 밀접한 연관성이 있음을 알 수 있었다.

Keywords

References

  1. Aditiawati, P., H. Yohandini, F. Madayanti, and Akhmaloka. 2009. Microbial diversity of acidic hot spring (Kawah Hujan B) in geothermal field of Kamojang area, west Java-Indonesia. Open Microbiol. J. 3: 58-66. https://doi.org/10.2174/1874285800903010058
  2. Amann, R. I., W. Ludwig, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169.
  3. Aminin, A. L. N., F. M. Warganegara, P. Aditiawati, and Akhmaloka. 2008. Culture-independent and culture-dependent approaches on microbial community analysis at Gedongsongo (GS-2) hot spring. Int. J. Integr. Biol. 2: 145-152.
  4. Biers, E. J., S. Sun, and E. C. Howard. 2009. Prokaryotic genomes and diversity in surface ocean waters: interrogating the global ocean sampling metagenome. Appl. Environ. Microbiol. 75: 2221-2229. https://doi.org/10.1128/AEM.02118-08
  5. Bintrim, S. B., T. J. Donohue, J. Handelsman, G. P. Roberts, and R. M. Goodman. 1997. Molecular phylogency of Archaea from soil. Proc. Natl. Acad. Sci. USA 94: 277-282. https://doi.org/10.1073/pnas.94.1.277
  6. Brock, T. D. and J. Gustafson. 1976. Ferric iron reduction by sulfur- and iron-oxidizing bacteria. Appl. Environ. Microbiol. 32: 567-571.
  7. Burns, D. G., H. M. Camakaris, P. H. Janssen, and M. L. Dyall-Smith. 2004. Combined use of cultivation-dependent and cultivation-independent methods indicates that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable. Appl. Environ. Microbiol. 70: 5258-5265. https://doi.org/10.1128/AEM.70.9.5258-5265.2004
  8. Dahllof, I., H. Baillie, and S. Kjelleberg. 2000. rpoB-Based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Appl. Environ. Microbiol. 66: 3376-3380. https://doi.org/10.1128/AEM.66.8.3376-3380.2000
  9. Friedrich, A. B., H. Merkert, T. Fendert, J. Hacker, P. Proksch, and U. Hentschel. 1999. Microbial diversity in the marine sponge Aplysina cavernicola (formerly Verongia cavernicola) analyzed by fluorescence in situ hybridization (FISH). Mar. Biol. 134: 461-470. https://doi.org/10.1007/s002270050562
  10. Ghosh, D., B. Bal, V. K. Kashyap, and S. Pal. 2003. Molecular phylogenetic exploration of bacterial diversity in a Bakreshwar (India) hot spring and culture of Shewanella-related thermophiles. Appl. Environ. Microbiol. 69: 4332-4336. https://doi.org/10.1128/AEM.69.7.4332-4336.2003
  11. Goh, K. M., Y. S. Chua, R. N. Z. R. A. Rahman, R. Chan, and R. Illias. 2011. A comparison of conventional and miniprimer PCR to elucidate bacteria diversity in Malaysia Ulu Slim hot spring using 16S rDNA clone library. Rom. Biotechnol. Lett. 16: 6247-6255.
  12. Herdianita, N. R. and B. Priadi. 2008. Arsenic and mercury concentrations at several geothermal systems in West Java, Indonesia. ITB J. Sci. 40A: 1-14.
  13. Hobel, C. F. V., V. T. Marteinsson, S. Hauksdottir, O. Fridjonsson, S. Skirnisdottir, G. O. Hreggvidsson, and J. K. Kristjansson. 2004. Use of low nutrient enrichments to access novel amylase genes in silent diversity of thermophiles. World J. Microbiol. Biotechnol. 20: 801-809. https://doi.org/10.1007/s11274-004-2623-4
  14. Hugenholtz, P., C. Itulle, K. L. Hershberger, and N. R. Pace. 1998. Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180: 366-376.
  15. Janssen, P. H. 2006. Identifying the dominant soil bacteria taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72: 1719-1728. https://doi.org/10.1128/AEM.72.3.1719-1728.2006
  16. Karl, D. M. 2002. Microbiological oceanography - hidden in a sea of microbes. Nature 415: 590-591.
  17. Kim, J. N., M. J. Seo, E. A. Cho, S. J. Lee, S. B. Kim, C. I. Cheigh, and Y. R. Pyun. 2005. Screening and characterization of an esterase from a metagenomic library. J. Microbiol. Biotechnol. 15: 1067-1072.
  18. Kirchman, D. L. 2002. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol. Ecol. 39: 91-100.
  19. Kozubal, M., R. W. Macur, S. Korf, W. P. Taylor, G. G. Ackerman, A. Nagy, and W. P. Inskeep. 2008. Isolation and distribution of a novel iron-oxidizing crenarchaeon from acidic geothermal springs in Yellowstone national park. Appl. Environ. Microbiol. 74: 942-949. https://doi.org/10.1128/AEM.01200-07
  20. Lopez-Archilla, A. I., I. Marin, and R. Amils. 2001. Microbial community composition and ecology of an acidic aquatic environment: the Tino River, Spain. Microb. Eol. 41: 20-35.
  21. Maugeri, T. L., V. Lentini, C. Gulgliandolo, F. Italiano, S. Cousin, and E. Stackebrandt. 2009. Microbial communities at two shallow hydrothermal vents off Panarea Island (Edolian Islands, Italy). Extremophiles 13: 199-212. https://doi.org/10.1007/s00792-008-0210-6
  22. Maugeri, T. L., V. Lentini, C. Gugliandolo, S. Cousin, and E. Stackebrandt. 2010. Microbial diversity at a hot, shallow-sea hydrothermal vent in the Southern Tyrrhenian sea (Italy). Geomicrobiol. J. 27: 380-390. https://doi.org/10.1080/01490450903451518
  23. Miller, S. R. and R. W. Castenholz. 2000. Evolution of thermotolerance in hot spring Cyanobacteria of the genus Synechococcus. Appl. Environ. Microbiol. 66: 4222-4229. https://doi.org/10.1128/AEM.66.10.4222-4229.2000
  24. Oren, A. 2002. Diversity of halophilic microorganisms: Environments, phylogency, physiology, and applications. J. Ind. Microbiol. Biotechnol. 28: 56-63.
  25. Park, S. J., C. H. Kang, and S. K. Rhee. 2006. Characterization of the microbial diversity in a Korean solar saltern by 16S rRNA gene analysis. J. Microbiol. Biotechnol. 16: 1640-1645.
  26. Ruby, E. G., C. O. Wirsen, and H. W. Jannasch. 1981. Chemolithotrophic sulfur-oxidizing bacteria from the Galapagos rift hydrothermal vents. Appl. Environ. Microbiol. 42: 317-324.
  27. Wu, C., F. Yang, R. Gao, Z. Huang, B. Xu, Y. Dong, T. Hong, and X. Tang. 2010. Study of fecal bacterial diversity in Yunnan snub-nosed monkey (Rhinopithecus bieti) using phylogenetic analysis of cloned 16S rRNA gene sequences. Afr. J. Biotechnol. 9: 6278-6289.
  28. Yin, H., L. Cao, M. Xie, Q. Chen, G. Qiu, J. Zhou, L. Wu, D. Wang, and X. Liu. 2008. Bacterial diversity based on 16S rRNA and gyrB genes at Yinshan mine, China. Syst. Appl. Microbiol. 31: 302-311. https://doi.org/10.1016/j.syapm.2008.05.003
  29. Zhou, J., M. A. Bruns, and J. M. Tiedje. 1996. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62: 316-322.

Cited by

  1. Morphological identification, isolation, and culturing of cyanobacteria derived from hot spring of Cisolok and Galunggung Mountain based on enrichment method vol.1442, pp.None, 2012, https://doi.org/10.1088/1742-6596/1442/1/012069
  2. Isolation and molecular identification of thermophilic bacteria from litter of mount Galunggung hot spring, Tasikmalaya, Indonesia vol.1943, pp.1, 2012, https://doi.org/10.1088/1742-6596/1943/1/012097