DOI QR코드

DOI QR Code

The Dietary Effects of Fermented Chlorella vulgaris (CBT®) on Production Performance, Liver Lipids and Intestinal Microflora in Laying Hens

  • Zheng, L. (College of Animal Bioscience and Technology, Konkuk University) ;
  • Oh, S.T. (College of Animal Bioscience and Technology, Konkuk University) ;
  • Jeon, J.Y. (Daesang Corp.) ;
  • Moon, B.H. (Celltech, Co., Ltd.) ;
  • Kwon, H.S. (Ace M&F, Co., Ltd.) ;
  • Lim, S.U. (Ace M&F, Co., Ltd.) ;
  • An, B.K. (College of Animal Bioscience and Technology, Konkuk University) ;
  • Kang, C.W. (College of Animal Bioscience and Technology, Konkuk University)
  • Received : 2011.08.05
  • Accepted : 2011.10.28
  • Published : 2012.02.01

Abstract

Fermented Chlorella vulgaris CBT$^{(R)}$ was evaluated for its effects on egg production, egg quality, liver lipids and intestinal microflora in laying hens. One hundred and eight Hy-line Brown layers (n = 108), 80 wk of age, were fed a basal diet supplemented with CBT$^{(R)}$ at the level of 0, 1,000 or 2,000 mg/kg, respectively for 42 d. Egg production was measured daily and egg quality was measured every two weeks. Five eggs from each replicate were collected randomly to determine egg quality. Egg production increased linearly with increasing levels of CBT$^{(R)}$ supplementation (p<0.05), although there was no significant effect of treatment on feed intake. Egg yolk color (p<0.001) and Haugh unit (p<0.01) improved linearly with increasing dietary CBT$^{(R)}$. Hepatic triacylglycerol level was linearly decreased with increasing dietary CBT$^{(R)}$ (p<0.05). The supplemental CBT$^{(R)}$ resulted in linear (p<0.001) and quadratic (p<0.01) response in population of cecal lactic acid bacteria. In conclusion, fermented Chlorella vulgaris supplemented to laying hen diets improved egg production, egg yolk color, Haugh unit and positively affected the contents of hepatic triacylglycerol and the profiles of cecal microflora.

Keywords

References

  1. Abril, J. R., W. R. Barclay and P. G. Abril. 2000. Safe use of microalgae (DHA GOLDTM) in laying hen feed for the production of DHA-enriched eggs. In: Egg Nutrition and Biotechnology (Ed. J. S. Sim, S. Nakai and W. Guenter). CAB International Publishing, New York. p. 200.
  2. An, B. K., C. Banno, Z. S. Xia, K. Tanaka and S. Ohtani. 1997. Effects of dietary fat sources on lipid metabolism in growing chicks (Gallus domesticus). Comp. Biochem. Physiol. 116:119-125.
  3. Apt, K. E. and P. W. Brehrens. 1999. Commercial developments in microalgae biotechnology. J. Psychol. 35:215-226.
  4. Borowitzka, M. A. 1988. Vitamins and fine chemicals from micro-algae. In: Microalgal Biotechnology (Ed. M. A. Borowitzka and L. J. Borowitzka). Cambridge University Press, New York. p. 153.
  5. Folch, J., M. Lees and G. H. Sloane-Stanley. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497-509.
  6. Goswami, M. N. D. and A. R. Robblee. 1958. Aspartic-glutamic transaminase activity in chick liver. Poult. Sci. 37:96-99. https://doi.org/10.3382/ps.0370096
  7. Grigorova, S. 2005. Dry biomass of fresh water algae of Chlorella genus in the combined forages for laying hens. J. Cent. European Agric. 6:625-630.
  8. Halle, I., P. Janczyk, G. Freyer and W. B. Souffrant. 2009. Effect of microalgae Chlorella vulgaris on laying hen performance. Archiva Zootechnica 12:5-13.
  9. Han, J. G., G. G. Kang, J. K. Kim and S. H. Kim. 2002. The present status and future of Chlorella. Food. Sci. Ind. 6:64-69.
  10. Haugh, R. R. 1937. The Haugh unit for measuring egg quality. US Egg Poult. Mag. 43:552-555, 572-573.
  11. Janczyk, P., B. Halle and B. Souffrant. 2009. Microbial community composition of the crop and ceca contents of laying hens fed diets supplemented with Chlorella vulgaris. Poult. Sci. 88:2324-2332. https://doi.org/10.3382/ps.2009-00250
  12. Kanno, T., K. Shinpo, M. Masada and G. Tamura. 1996. Growth promoting factor for an extract of Chlorella vulgaris CK-5. J. Ferment. Bioeng. 81:159-162.
  13. Kay, R. A. 1991. Microalgae as food and supplement. Crit. Rev. Food Sci. Nutr. 30:555-573. https://doi.org/10.1080/10408399109527556
  14. Keijiro, U. 2011. Method for producing Chlorella fermented food. United States Patent. Patent No.: US 7,914,832 B2.
  15. Kim, K. E. 2011. Study on dietary effect of Chlorella vulgaris on productivity and immune response in poultry and post weaned pigs. Ph. D. Thesis, Konkuk University, Seoul, Korea.
  16. Konishi, F., M. Mitsuyama, M. Okuda, K. Tanaka, H. Hasegawa and K. Nomoto. 1996. Protective effect of an acidic glycoprotein obtained from culture of Chlorella vulgaris against myelosuppression by 5-fluorouracil. Cancer Immunol. Immunother. 42:268-274. https://doi.org/10.1007/s002620050281
  17. Kotrbacek, V., R. Halouzka, V. Jurajda, Z. Knotkava and J. Filka. 1994. Increased immune response in broilers after administration of natural food supplements. Vet. Med. (Praha) 39:321-328.
  18. Lasker, R. and A. C. Giese. 1954. Nutrition of the sea urchin, Strongylocentrotus purpuratus. Biol. Bull. 106:328-340. https://doi.org/10.2307/1538767
  19. Lee, H. S., H. J. Park and M. K. Kim. 2008. Effect of Chlorella vulgaris on lipid metabolism in Wistar rats fed high fat diet. Nutr. Res. Pract. 2:204-210. https://doi.org/10.4162/nrp.2008.2.4.204
  20. Lin, Y. C. 1969. The supplementary effect of algae on the nutritive value of soybean milk. J. Formos. Med. Assoc. 68:15-21.
  21. Lipstein, B. and S. Hurwitz. 1980. The nutritional value of algae for poultry. Dried Chlorella in broiler diets. Br. Poult. Sci. 21:9-21. https://doi.org/10.1080/00071668008416630
  22. Lipstein, B., S. Hurwitz and S. Bornstein. 1980. The nutritional value of algae for poultry. Dried Chlorella in layer diets. Br. Poult. Sci. 21:23-27. https://doi.org/10.1080/00071668008416631
  23. Lumeiji, J. T. 1997. Avian clinical biochemistry. In: Clinical Biochemistry of Domestic Animals, 5th Ed. (Ed. J. J. Kaneko, J. W. Harvey and M. L. Bruss). Academic Press, Oxford, UK. pp. 857-883.
  24. Marie, C. and S. Vladimir. 2001. Effects of high-fat and Chlorella vulgaris feeding on changes in lipid metabolism in mice. Biologia (Bratisl.) 56:661-666.
  25. Miller, T. L. and M. J. Wolin. 1974. A serum bottle modification of the hungate technique for cultivating obligate anaerobes. Appl. Environ. Microbiol. 27:985-987.
  26. NRC. 1994. Nutrient requirements of poultry. 9th Ed. Natl. Acad. Press, Washington DC.
  27. Prim, P. and J. M. Lawrence. 1975. Utilization of marine plants and their constituents by bacteria isolated from the guts of echinoids (Echinodermata). Mar. Biol. 33:167-173. https://doi.org/10.1007/BF00390722
  28. Rania, M. A. and M. T. Hala. 2008. Antibacterial and antifungal activity of cyanobacteria and green microalgae. Evaluation of medium components by placket-burman design for antimicrobial activity of Spirulina platensis. Global J. Biotechnol. Biochem. 3:22-31.
  29. SAS Institute Inc. 2002. SAS/STAT user's guide: Statistics, Release 8.2 Edition. SAS Inst. Inc., Cary, North Carolina.
  30. Schubert, L. E. 1988. The use of Spirulina (Cyanophycaea) and Chlorella (Chlorophyceae) as food resource for animals and humans. In: Progressing Physiological Research (Ed. F. E. Round and D. J. Chapman). Biopress Ltd. p. 237.
  31. Shibata, S., K. Oda, N. Onodera-Masuoka, S. Matsubara, H. Kikuchi- Hayakawa, F. Ishikawa, A. Iwabuchi and H. Sansawa. 2001. Hypocholesterolemic effect of indigestible fraction of Chlorella vulgaris in cholesterol-fed rats. J. Nutr. Sci. Vitaminol. 47:373-377. https://doi.org/10.3177/jnsv.47.373
  32. So, H. H., E. O. Jeon, S. H. Byun and I. P. Mo. 2009. Early diagnosis of fatty liver-hemorrhagic syndrome using blood biochemistry in commercial layers. Korean J. Poult. Sci. 36:165-175. https://doi.org/10.5536/KJPS.2009.36.2.165
  33. Surachon, P., P. Sukon, P. Chaveerach, P. Waewdee and C. Soikum. 2011. Screening of lactic acid bacteria isolated from chicken ceca for in vitro growth inhibition of Salmonella enteritica Serovar Enteritidis. J. Anim. Vet. Adv. 10:939-944. https://doi.org/10.3923/javaa.2011.939.944
  34. Tredici, M. R. 1999. Bioreactors, photo. In: Encyclopedia of bioprocess technology: fermentation, biocatalysis and bioseparation (Ed. M. C. Flickinger and S. W. Drew). John Wiley & Sons Inc.: New York, pp. 395-419.
  35. Williams, K. C. 1992. Some factors affecting albumen quality with particular reference to Haugh unit score. World's Poult. Sci. J. 48:5-16. https://doi.org/10.1079/WPS19920002

Cited by

  1. Effects of Dietary Fermented Chlorella vulgaris (CBT®) on Growth Performance, Relative Organ Weights, Cecal Microflora, Tibia Bone Characteristics, and Meat Qualities in Pekin Ducks vol.28, pp.1, 2015, https://doi.org/10.5713/ajas.14.0473
  2. The Tissue Distribution of Lutein in Laying Hens Fed Lutein Fortified Chlorella and Production of Chicken Eggs Enriched with Lutein vol.34, pp.2, 2014, https://doi.org/10.5851/kosfa.2014.34.2.172
  3. Effect of yeast with bacteriocin from rumen bacteria on laying performance, blood biochemistry, faecal microbiota and egg quality of laying hens vol.99, pp.6, 2014, https://doi.org/10.1111/jpn.12262
  4. Effect of Dietary Marine Microalgae (Schizochytrium) Powder on Egg Production, Blood Lipid Profiles, Egg Quality, and Fatty Acid Composition of Egg Yolk in Layers vol.28, pp.3, 2015, https://doi.org/10.5713/ajas.14.0463
  5. The effects of different levels of Chlorella microalgae on blood biochemical parameters and trace mineral concentrations of laying hens reared under heat stress condition vol.60, pp.5, 2016, https://doi.org/10.1007/s00484-015-1071-1
  6. Antibacterial Potential of Chlorella vulgaris and Dunaliella salina Extracts Against Streptococcus mutans vol.13, pp.2, 2018, https://doi.org/10.5812/jjnpp.13226
  7. Valuable bioproducts obtained from microalgal biomass and their commercial applications: A review vol.23, pp.3, 2018, https://doi.org/10.4491/eer.2017.220
  8. Application of microalgae biomass in poultry nutrition vol.71, pp.4, 2012, https://doi.org/10.1017/s0043933915002457
  9. The application of the microalgae Chlorella spp. as a supplement in broiler feed vol.75, pp.2, 2012, https://doi.org/10.1017/s0043933919000047
  10. The Usefulness of Microalgae Compounds for Preventing Biofilm Infections vol.9, pp.1, 2012, https://doi.org/10.3390/antibiotics9010009
  11. Use of algae in poultry production: a review vol.76, pp.4, 2020, https://doi.org/10.1080/00439339.2020.1830012
  12. Impact of dietary Chlorella vulgaris and carbohydrate-active enzymes incorporation on plasma metabolites and liver lipid composition of broilers vol.17, pp.1, 2012, https://doi.org/10.1186/s12917-021-02932-8
  13. Effects of different probiotic fermented feeds on production performance and intestinal health of laying hens vol.101, pp.2, 2012, https://doi.org/10.1016/j.psj.2021.101570