DOI QR코드

DOI QR Code

The Effect of Forage Level and Oil Supplement on Butyrivibrio fibrisolvens and Anaerovibrio lipolytica in Continuous Culture Fermenters

  • Gudla, P. (Department of Animal Science, Food and Nutrition, Southern Illinois University Carbondale) ;
  • Ishlak, A. (Department of Animal Science, Food and Nutrition, Southern Illinois University Carbondale) ;
  • Abughazaleh, A.A. (Department of Animal Science, Food and Nutrition, Southern Illinois University Carbondale)
  • Received : 2011.07.23
  • Accepted : 2011.10.27
  • Published : 2012.02.01

Abstract

The objective of this study was to evaluate the effects of forage level and oil supplement on selected strains of rumen bacteria believed to be involved in biohydrogenation (BH). A continuous culture system consisting of four fermenters was used in a $4{\times}4$ Latin square design with a factorial arrangement of treatments, with four 10 d consecutive periods. Treatment diets were: i) high forage diet (70:30 forage to concentrate (dry matter basis); HFC), ii) high forage plus oil supplement (HFO), iii) low forage diet (30:70 forage to concentrate; LFC), and iv) low forage plus oil supplement (LFO). The oil supplement was a blend of fish oil and soybean oil added at 1 and 2 g/100 g dry matter, respectively. Treatment diets were fed for 10 days and samples were collected from each fermenter on the last day of each period 3 h post morning feeding. The concentrations of vaccenic acid (t11C18:1; VA) and c9t11 conjugated linoleic acid (CLA) were greater with the high forage diet while the concentrations of t10 C18:1 and t10c12 CLA were greater with the low forage diet and addition of oil supplement increased their concentrations at both forage levels. The DNA abundance of Anaerovibrio lipolytica, and Butyrivibrio fibrisolvens vaccenic acid subgroup (Butyrivibrio VA) were lower with the low forage diets but not affected by oil supplement. The DNA abundance of Butyrivibrio fibrisolvens stearic acid producer subgroup (Butyrivibrio SA) was not affected by forage level or oil supplement. In conclusion, oil supplement had no effects on the tested rumen bacteria and forage level affected Anaerovibrio lipolytica and Butyrivibrio VA.

Keywords

References

  1. AbuGhazaleh, A. A. and B. N. Jacobson. 2007. Production of trans-C18:1 and conjugated linoleic acid production by ruminal microbes in continuous culture fermenters fed diets containing fish oil and sun flower oil with decreasing levels of forage. Animal 1:660-665. https://doi.org/10.1017/S1751731107727489
  2. AbuGhazaleh, A. A., S. Abo-El-Nor and S. A. Ibrahim. 2011. The effect of replacing corn with glycerol on ruminal bacteria in continuous culture fermenters. J. Anim. Physiol. Anim. Nutr. 95:313-319. https://doi.org/10.1111/j.1439-0396.2010.01056.x
  3. Alzahal, O., M. M. Or-Rashid, S. L. Greenwood, M. S. Douglas and B. W. McBride. 2009. The effect of dietary fiber level on milk fat concentration and fatty acid profile of cows fed diets containing low levels of polyunsaturated fatty acids. J. Dairy Sci. 92:1108-1116. https://doi.org/10.3168/jds.2008-1472
  4. Amaru, D. L. and C. J. Field. 2009. Conjugated linoleic acid decreases MCF-7 human breast cancer cell growth and insulin-like growth factor-1 receptorl. Lipids 44:449-458. https://doi.org/10.1007/s11745-009-3288-4
  5. Belenguer, A., P. G. Toral, P. Frutos and G. Hervas. 2010. Changes in the rumen bacterial community in response to sunflower oil and fish oil supplements in the diet of dairy sheep. J. Dairy Sci. 93:3275-3286. https://doi.org/10.3168/jds.2010-3101
  6. Bhattacharya, A., J. Causey, G. Fernandes, J. Banu and M. Rahman. 2006. Biological effects of conjugated linoleic acids in health and disease. J. Nutr. Biochem. 17:789-810. https://doi.org/10.1016/j.jnutbio.2006.02.009
  7. Choi, N. J., J. Y. Imm, S. Oh, B. C. Kim, H. J. Hwang and Y. J. Kim. 2005. Effect of pH and oxygen on conjugated linoleic acid (CLA) production by mixed rumen bacteria from cows fed high concentrate and high forage diets. Anim. Feed Sci. Technol. 123-124:643-653. https://doi.org/10.1016/j.anifeedsci.2005.04.054
  8. Doreau, M., G. Chesneau, F. Glasser, S. Laverroux and J. Normand. 2009. Effect of linseed fed as rolled seeds, extruded seeds or oil on fatty acid rumen metabolism and intestinal digestibility in cows. Lipids 44:53-62. https://doi.org/10.1007/s11745-008-3250-x
  9. Duckett, S. K. and M. H. Gillis. 2010. Effects of oil source and fish oil addition on ruminal biohydrogenation of fatty acids and conjugated linoleic acid formation in beef steers fed finishing diets. J. Anim. Sci. 88:2684-2691. https://doi.org/10.2527/jas.2009-2375
  10. Fuentes, M. C., S. Calsamiglia, P. W. Cardozo and B. Vlaeminc. 2009. Effect of pH and level of concentrate in the diet on the production of biohydrogenation intermediates in a dual-flow continuous culture. J. Dairy Sci. 92:4456-4466. https://doi.org/10.3168/jds.2008-1722
  11. Harfoot, C. G. and G. Hazlewood. 1997. Lipid metabolism in the rumen. In: The rumen microbial ecosystem (Ed. P. N. Hobson and C. S. Stewart). Blackie and Prof., London, UK, pp. 382-426.
  12. Henderson, C., P. N. Hobson and R. Summers. 1969. The production of amylase, protease, and lipolytic enzymes by two species of anaerobic rumen bacteria. In Proc. 4th Int. Symp. Prague, Czechoslovakia: Continuous Culture Microorganisms, p. 189.
  13. Hobson, P. N. 1965. Continuous culture of some anaerobic and facultatively anaerobic rumen bacteria. J. Gen. Microbiol. 38:167-180. https://doi.org/10.1099/00221287-38-2-167
  14. Huot, P. S. P., D. W. L. Ma and B. Sarkar. 2010. Conjugated linoleic acid alters caveolae phospholipid fatty acid composition and decreases caveolin-1 expression in MCF-7 breast cancer cells. Nutr. Res. 30:179-185. https://doi.org/10.1016/j.nutres.2010.02.003
  15. Huws, S. A., M. R. F. Lee, S. M. Muetzel, M. B. Scott and R. J. Wallace. 2010. Forage type and fish oil causes shifts in rumen bacterial diversity. FEMS Microbiol. Ecol. 73:396-407.
  16. Jiang, Z. Y., L. Yang, S. Q. Jiang, Y. C. Lin, W. J Zhong and C. T. Zheng. 2010. Conjugated linoleic acid differentially regulates fat deposition in backfat and longissimus muscle of finishing pigs. J. Anim. Sci. 88:694-1705.
  17. Jin, G. L., Y. J. Kim, M. K. Song, S. H. Choi and H. G. Lee. 2008. Effects of monensin and fish oil on conjugated linoleic acid production by rumen microbes in Holstein cows fed diets supplemented with soybean oil and sodium bicarbonate. Asian-Aust. J. Anim. Sci. 21:1728-1735. https://doi.org/10.5713/ajas.2008.80104
  18. Kelley, N. S., K. L. Erickson and N. E. Hubbard. 2007. Conjugated linoleic acid isomers and cancer. J. Nutr. 137:2599-2607.
  19. Kim, E. J., S. A. Huws, M. R. F. Lee, J. D. Wood, S. M. Muetzel and R. Wallace. 2008. Fish oil increases the duodenal flow of long chain polyunsaturated fatty acids and trans-11 18:1 and decreases 18:0 in steers via changes in the rumen bacterial community. J. Nutr. 138:889-896.
  20. Kucuk, O., B. W. Hess and D. C. Rule. 2008. Fatty acid compositions of mixed ruminal microbes isolated from sheep supplemented with soybean oil. Res. Vet. Sci. 84:215-224. https://doi.org/10.1016/j.rvsc.2007.04.010
  21. Lee, M. R. F., K. J. Shingfield, J. K. S., Tweed, V. Toivonen, S. A. Huws and N. D. Scollan. 2008. Effect of fish oil on ruminal biohydrogenation of C18 unsaturated fatty acids in steers fed grass or red clover silages. Animal 2:1859-1869. https://doi.org/10.1017/S1751731108002899
  22. Loor, J. J., K. Ueda, A. Ferlay, Y. Chilliard and M. Doreau. 2004. Biohydrogenation, duodenal flow, and intestinal digestibility of trans fatty acids and conjugated linoleic acids in response to dietary forage:concentrate ratio and linseed oil in dairy cows. J. Dairy Sci. 87:2472-2485. https://doi.org/10.3168/jds.S0022-0302(04)73372-X
  23. Maia, M. R., L. C. Chaudhary, L. Figueres and R. J. Wallace. 2007. Metabolism ofpolyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Van Leeuwenhoek 91:303-314. https://doi.org/10.1007/s10482-006-9118-2
  24. Maia, M. R., L. C. Chaudhary and C. S. Bestwick. 2010. Toxicity of unsaturated fatty acids to biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens. BMC. Microbiol. 10:52. https://doi.org/10.1186/1471-2180-10-52
  25. Miranda J., I. Churruca, A. Fernandez-Quintela, V. M. Rodriguez, M. T. Macarulla, E. Simón and M. P. Portillo. 2009. Weak effect of trans-10, cis-12-conjugated linoleic acid on body fat accumulation in adult hamsters. Br. J. Nutr. 102:1583-1589. https://doi.org/10.1017/S0007114509990912
  26. Paillard, D., N. McKain, L. C. Chaudhary, N. D. Walker, F. Pizette, I. Koppova, N. R. McEwan, J. Kopecny and P. E. Vercoe. 2007. Relation between phylogenetic position, lipid metabolism and butyrate production by different Butyrivibrio-like bacteria from the rumen. Antonie Van Leeuwenhoek 91:417-422. https://doi.org/10.1007/s10482-006-9121-7
  27. Peterson, D. G., L. H. Baumgard and D. E. Bauman. 2002. Short communication: milk fat response to low doses of trans-10, cis-12 conjugated linoleic acid (CLA). J. Dairy Sci. 85:1764-1766. https://doi.org/10.3168/jds.S0022-0302(02)74250-1
  28. Piperova, L. S., J. Sampugna, B. B. Teter, K. F. Kalscheur, M. P. Yurawecz, Y. Ku, K. M. Morehouse and R. A. Erdman. 2002. Duodenal and milk trans octadecenoic acid and conjugated linoleic acid (CLA) isomers indicate that postabsorptive synthesis is the predominant source of cis-9-containing CLA in lactating dairy cows. J. Nutr. 132:1235-1241.
  29. Potu, R. B., A. A. AbuGhazaleh, D. Hastings, K. Jones and S. A. Ibrahim. 2011. The effect of lipid supplements on ruminal bacteria in continuous culture fermenters varies with the fatty acid composition. J. Microbiol. 49:216-223. https://doi.org/10.1007/s12275-011-0365-1
  30. Sackmann, J. R., S. K. Duckett, M. H. Gillis, C. E. Realimi, A. H. Parks and R. B. Eggelston. 2003. Effects of forage and sunflower oil levels on ruminal biohydrogenation of fatty acids and conjugated linoleic acid formation in beef steers and finishing diets. J. Anim. Sci. 81:3174-3181.
  31. Tajima, K., R. I. Aminov, T. Nagamine, H. Matsui, M. Nakamura and Y. Benno. 2001. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl. Environ. Microbiol. 67:2766-2774. https://doi.org/10.1128/AEM.67.6.2766-2774.2001
  32. Van Nevel, C. J. and D. I. Demeyer. 1996. Influence of pH on lipolysis and biohydrogenation of soybean oil by rumen contents in vitro. Reprod. Nutr. Dev. 36:53-63. https://doi.org/10.1051/rnd:19960105
  33. Varadyova, Z., S. Kisidayova, P. Siroka and D. Jalc. 2007. Fatty acid profiles of rumen fluid from sheep fed diets supplemented with various oils and effect on the rumen ciliate population. Czech. J. Anim. Sci. 52:399-406.

Cited by

  1. Changes in milk and plasma fatty acid profile in response to fish and soybean oil supplementation in dairy sheep vol.80, pp.02, 2013, https://doi.org/10.1017/S0022029913000137
  2. Effects of various weaning times on growth performance, rumen fermentation and microbial population of yellow cattle calves vol.30, pp.11, 2017, https://doi.org/10.5713/ajas.16.0981