DOI QR코드

DOI QR Code

Shallow Population Genetic Structures of Thread-sail Filefish (Stephanolepis cirrhifer) Populations from Korean Coastal Waters

  • Yoon, M. (Institute of Marine Living Modified Organisms, Pukyong National University) ;
  • Park, W. (Institute of Marine Living Modified Organisms, Pukyong National University) ;
  • Nam, Y.K. (Institute of Marine Living Modified Organisms, Pukyong National University) ;
  • Kim, D.S. (Institute of Marine Living Modified Organisms, Pukyong National University)
  • Received : 2011.04.28
  • Accepted : 2011.06.11
  • Published : 2012.02.01

Abstract

Genetic diversities, population genetic structures and demographic histories of the thread-sail filefish Stephanolepis cirrhifer were investigated by nucleotide sequencing of 336 base pairs of the mitochondrial DNA (mtDNA) control region in 111 individuals collected from six populations in Korean coastal waters. A total of 70 haplotypes were defined by 58 variable nucleotide sites. The neighbor-joining tree of the 70 haplotypes was shallow and did not provide evidence of geographical associations. Expansion of S. cirrhifer populations began approximate 51,000 to 102,000 years before present, correlating with the period of sea level rise since the late Pleistocene glacial maximum. High levels of haplotype diversities ($0.974{\pm}0.029$ to $1.000{\pm}0.076$) and nucleotide diversities (0.014 to 0.019), and low levels of genetic differentiation among populations inferred from pairwise population FST values (-0.007 to 0.107), support an expansion of the S. cirrhifer population. Hierarchical analysis of molecular variance (AMOVA) revealed weak but significant genetic structures among three groups ($F_{CT}$ = 0.028, p<0.05), and no genetic variation within groups (0.53%; $F_{SC}$ = 0.005, p = 0.23). These results may help establish appropriate fishery management strategies for stocks of S. cirrhifer and related species.

Keywords

References

  1. Allendorf, F. W. and N. Ryman. 1987. Population genetics and fishery management. In: Genetic Management of Hatchery Stocks (Ed. N. Ryman and F. Utter) University of Washington Press, Seattle, WA, USA. pp. 141-159.
  2. Avise, J. C. 1994. Molecular markers, natural history and evolution. Chapman & Hall, New York, USA.
  3. Avise, J. C. 2000. Phylogeography: The History and Formation of Species. Harvard University Press, Cambridge, MA, USA.
  4. Bailey, K. M. 1997. Structural dynamics and ecology of flatfish populations. Neth. J. Sea Res. 37:269-280. https://doi.org/10.1016/S1385-1101(97)00018-X
  5. Brown, J. R., A. T. Beckenbach and M. J. Smith. 1993. Intraspecific DNA sequence variation of the mitochondrial control region of white sturgeon (Acipenser transmontanus). Mol. Biol. Evol. 10:326-341.
  6. Excoffier, L., G. Laval and S. Schneider. 2005. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol. Bioinform. 1:47-50.
  7. FAO. 2004. Depleted marine resources: an approach to quantification based on the FAO capture database. FAO Fisheries Circular, No. 1011:18-19. Rome, Fisheries and Aquaculture Organization. Department, Fishery Information, Data and Statistics Unit.
  8. Felsenstein, J. 1993. PHYLIP (Phylogeny Interference Package) Version 3.5c. Department of Genetics, Washington State University, Seattle, USA.
  9. Frankel, O. H. and M. E. Soule. 1981. Conservation and evolution. Cambridge University Press, New York, USA.
  10. Grant, W. S. and B. W. Bowen. 1998. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J. Hered. 89:415-426. https://doi.org/10.1093/jhered/89.5.415
  11. Guarnieo, I., S. Franzellitti, N. Ungaro, S. Tommasini, C. Piccinetti and F. Tinti. 2002. Control region haplotype variation in the central Mediterranean common sole indicates geographical isolation and population structuring in Italian stock. J. Fish Biol. 60:1459-1474. https://doi.org/10.1111/j.1095-8649.2002.tb02440.x
  12. Han, Z. Q., T. X. Gao, T. Yanagimoto and Y. Sakurai. 2008. Genetic population structure of Nibea albiflora in Yellow Sea and East China Sea. Fish. Sci. 74:544-552. https://doi.org/10.1111/j.1444-2906.2008.01557.x
  13. Hurt, C. and H. Phillip. 2004. Conservation genetics in aquatic species: general approaches and case studies in fishes and spring snails of arid lands. Aquat. Sci. 66:402-413. https://doi.org/10.1007/s00027-004-0726-5
  14. Ichikawa, H. and R. C. Beardsley. 2002. The current system in the Yellow and East China Seas. J. Oceanog. 58:77-92. https://doi.org/10.1023/A:1015876701363
  15. Kim, I. S., Y. Choi, C. L. Lee, Y. J. Lee, B. J. Kim and J. H. Kim. 2005. Illustrated book of Korean fishes. Kyo-Hak Pub Co., Seoul. (in Korean).
  16. Kim, W. J., K. K. Kim, H. S. Han, B. H. Nam, Y. O. Kim, H. J. Kong, J. K. Noh and M. Yoon. 2010. Population structure of the olive flounder (Paralichthys olivaceus) in Korea inferred from microsatellite marker analysis. J. Fish Biol. 76:1958-1971. https://doi.org/10.1111/j.1095-8649.2010.02638.x
  17. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions that compare studies of nucleotide sequences. J. Mol. Evol. 16:111-120. https://doi.org/10.1007/BF01731581
  18. Kimura, M. 1996. Quaternary paleogeography of the Ryukyu. Arc. J. Geol. 105:259-285.
  19. Kimura, M. 2000. Paleography of the Ryukyu Islands. Tropics 10:5-24. https://doi.org/10.3759/tropics.10.5
  20. Kitano, J., S. Mori and C. L. Peichel. 2007. Phenotypic divergence and reproductive isolation between sympatric forms of Japanese threespine sticklebacks. Biol. J. Linn. Soc. 91:671-685. https://doi.org/10.1111/j.1095-8312.2007.00824.x
  21. Liu, J. X., T. X. Gao, K. Yokogawa and Y. P. Zhang. 2006. Differential population structuring and demographic history of two closely related fish species, Japanese sea bass (Lateolabrax japonicus) and spotted sea bass (Lateolabrax maculatus) in Northwestern Pacific. Mol. Phylogenet. Evol. 39:799-811. https://doi.org/10.1016/j.ympev.2006.01.009
  22. Masuda, H., K. Amaoka, C. Araga, T. Uyeno and T. Yoshino. 1984. The fishes of the Japanese Archipelago. Tokai University Press, Tokyo, Japan.
  23. McElroy, D., P. Moran, E. Bermingham and I. Kornfield. 1993. REAP: an integrated environment for the manipulation and phylogenetic analysis of restriction data. J. Hered. 83:157-158.
  24. Miyajima, Y., R. Masuda, A. Kurihara, R. Kamata, Y. Yamashita and T. Takeuchi. 2011. Juveniles of thread-sail filefish, Stephanolepis cirrhifer, can survive and grow by feeding on moon jellyfish Aurelia aurita. Fish. Sci. 77:41-48. https://doi.org/10.1007/s12562-010-0305-8
  25. Moritz, C., T. W. Dowling and W. M. Brown. 1987. Evolution of animal mitochondrial DNA: relevance for population biology and systematic. Ann. Rev. Ecol. Syst. 18:269-292. https://doi.org/10.1146/annurev.es.18.110187.001413
  26. Nei, M. 1987. Molecular evolutionary genetics. Columbia University Press, New York, USA.
  27. Nelson, J. S. 1994. Fishes of the World. 3rd Edn. John Wiley & Sons Inc., New York, USA.
  28. Ni, I. H. and K. Y. Kwok. 1999. Marine fish fauna in Hong Kong waters. Zool. Stud. 38:130-152.
  29. Nishimura, S. 1974. Formation of the sea of Japan. Tsukiji Shokan, Tokyo, Japan.
  30. Rogers, A. R. and H. Harpending. 1992. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9:552-569.
  31. Rozas, J. and R. Rozas. 1997. DnaSP version 2.0: a novel software package for extensive molecular population genetics analysis. Comput. Appl. Biosci. 13:307-311.
  32. Sato, S., J. Ando, H. Ando, S. Urawa, A. Urano and S. Abe. 2001. Genetic variation among Japanese populations of chum salmon inferred from the nucleotide sequences of the mitochondrial DNA control region. Zoolog. Sci. 18:99-106. https://doi.org/10.2108/zsj.18.99
  33. Savolainen, O. and H. Kuittinen. 2000. Small population processes. In: Forest Conservation Genetics: Principles and Practice (Ed. A. Young, D. Boshier and T. Boyle) CABI Publishing, Wallingford, UK. pp. 91-100.
  34. Seeb, L. W. and P. Crane. 1999. Allozymes and mitochondrial DNA discriminate Asian and North American populations of chum salmon in mixed-stock fisheries along the south coast of the Alaska Peninsula. Trans. Am. Fish. Soc. 128:88-103. https://doi.org/10.1577/1548-8659(1999)128<0088:AAMDDA>2.0.CO;2
  35. Senjyu, T. 1999. The Japan Sea intermediate water; its characteristics and circulation. J. Oceanogr. 55:111-122. https://doi.org/10.1023/A:1007825609622
  36. Schneider, S. and L. Excoffier. 1999. Estimation of past demographic parameters from the distribution of pairwise differences when mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152:1079-1089.
  37. Shao, K. T., C. P. Lin, L. T. Ho and P. L. Lin. 1990. Study on the fish communities from northern and southern waters of Taiwan by analyzing the impingement data. J. Fish. Soc. Taiwan 17:73-90.
  38. Slatkin, M. and R. R. Hudson. 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129:555-562.
  39. Stepien, C. A. and J. E. Faber. 1998. Population genetic structure, phylogeography, and spawning philopatry in walleye (Stizostedion vitreum) from mtDNA control region sequences. Mol. Ecol. 7:1757-1769. https://doi.org/10.1046/j.1365-294x.1998.00512.x
  40. Shui, B. N., Z. Q. Han, T. X. Gao, Z. Q. Miao and T. Yanagimoto. 2009. Mitochondrial DNA variation in the East China Sea and Yellow Sea populations of Japanese Spanish mackerel Scomberomorus niphonius. Fish. Sci. 75:593-600. https://doi.org/10.1007/s12562-009-0083-3
  41. Weersing, K. and R. J. Toonen. 2009. Population genetics, larval dispersal, and connectivity in marine systems. Mar. Ecol. Prog. Ser. 393:1-12. https://doi.org/10.3354/meps08287
  42. Wilson, A. C., R. L. Cann, S. M. Carr, M. George, U. B. Gyllensten, K. Helm-Btchowski, R. G. Higuchi, S. R. Palumbi, E. M. Prager, R. D. Sage and M. Stone-King. 1985. Mitochondrial DNA and two perspectives on evolutionary genetics. Biol. J. Linn. Soc. 26:375-400. https://doi.org/10.1111/j.1095-8312.1985.tb02048.x
  43. Xiao, Y., Y. Zhang, T. Gao, T. Yanagimoto, M. Yabe and Y. Sakurai. 2009. Genetic diversity in the mtDNA control region and population structure in the small yellow croaker Larimichthys polyactis. Environ. Biol. Fishes 85:303-314. https://doi.org/10.1007/s10641-009-9497-0
  44. Yoon, M., J. Y. Jung, Y. K. Nam and D. S. Kim. 2011. Genetic diversity of thread-sail filefish (Stephanolepis cirrhifer) populations in Korean coastal waters inferred from mitochondrial DNA sequence analysis. Fish. Aqua. Sci. 14:16-21.
  45. Zhang, J., Z. Cai and L. Huang. 2006. Population genetic structure of crimson snapper Lutjanus erythropterus in East Asia, revealed by analysis of the mitochondrial control region. ICES J. Mar. Sci. 63:693-704. https://doi.org/10.1016/j.icesjms.2006.01.004