DOI QR코드

DOI QR Code

Re-evaluation of the Optimum Dietary Vitamin C Requirement in Juvenile Eel, Anguilla japonica by Using L-ascorbyl-2-monophosphate

  • Bae, Jun-Young (Department of Marine Bio-materials and Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University) ;
  • Park, Gun-Hyun (Department of Marine Bio-materials and Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University) ;
  • Yoo, Kwang-Yeol (Chungnam Fisheries Institute) ;
  • Lee, Jeong-Yeol (Department of Aquaculture and Aquatic Sciences, Kunsan National University) ;
  • Kim, Dae-Jung (New Strategy Research Center, National Fisheries Research and Development Institute) ;
  • Bai, Sung-Chul C. (Department of Marine Bio-materials and Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University)
  • Received : 2011.06.27
  • Accepted : 2011.09.28
  • Published : 2012.01.01

Abstract

This study was conducted to re-evaluate the dietary vitamin C requirement in juvenile eel, Anguilla japonica by using L-ascorbyl-2-monophosphate (AMP) as the vitamin C source. Five semi-purified experimental diets were formulated to contain 0 ($AMP_0$), 30 ($AMP_{24}$), 60 ($AMP_{52}$), 120 ($AMP_{108}$) and 1,200 ($AMP_{1137}$) mg AMP $kg^{-1}$ diet on a dry matter basis. Casein and defatted fish meal were used as the main protein sources in the semi-purified experimental diets. After a 4-week conditioning period, fish initially averaging $15{\pm}0.3$ g (mean${\pm}$SD) were randomly distributed to each aquarium as triplicate groups of 20 fish each. One of five experimental diets was fed on a DM basis to fish in three randomly selected aquaria, at a rate of 3% of total body weight, twice a day. At the end of the feeding trial, weight gain (WG) and specific growth rate (SGR) for fish fed $AMP_{52}$ and $AMP_{108}$ were significantly higher than those recorded for fish fed the control diet (p<0.05). Similarly, feed efficiency (FE) and protein efficiency ratio (PER) for fish fed $AMP_{52}$ were significantly higher than those for fish fed the control diet (p<0.05). Broken-line regression analysis on the basis of WG, SGR, FE and PER showed dietary vitamin C requirements of juvenile eel to be 41.1, 41.2, 43.9 and 43.1 (mg $kg^{-1}$ diet), respectively. These results indicated that the dietary vitamin C requirement could range from 41.1 to 43.9 mg $kg^{-1}$ diet in juvenile eel when L-ascorbyl-2-monophosphate was used as the dietary source of vitamin C.

Keywords

References

  1. Ai, Q. H., K. S. Mai, B. P. Tan, W. Xu, W. B. Zhang, H. M. Ma and Z. G. Liufu. 2006. Effects of dietary vitamin C on survival, growth, and immunity of large yellow croaker, Pseudosciaena crocea. Aquaculture 261:327-336. https://doi.org/10.1016/j.aquaculture.2006.07.027
  2. AOAC. 1995. Official methods of analysis of 16th edn. Association of Official Analytical Chemists, Arlington, Virginia, USA.
  3. Durve, V. S. and R. T. Lovell. 1982. Vitamin C and disease resistance in channel catfish, Ictalurus punctatus. Can. J. Fish Aquat. Sci. 39:948-951. https://doi.org/10.1139/f82-129
  4. FAO (Food and Agriculture Organization) 2010. Fishery information, data and statistics website. Aquaculture production, 1984-2009.
  5. Gouillou-Coustans, M. F., P. Bergot and S. J. Kaushik. 1998. Dietary ascorbic acid needs of common carp, Cyprinus carpio larvae. Aquaculture 161:453-461. https://doi.org/10.1016/S0044-8486(97)00292-5
  6. Hardie, L. J., T. C. Fletcher and C. J. Secombes. 1991. The effect of dietary vitamin C on the immune response of the Atlantic salmon, Salmo salar L. Aquaculture 95:201-214. https://doi.org/10.1016/0044-8486(91)90087-N
  7. Hilton, J. W., C. Y. Cho and S. J. Slinger. 1977. Evaluation of ascorbic acid status of rainbow trout, Salmo gairdneri. J. Fish. Res. Board Can. 34:2207-2210. https://doi.org/10.1139/f77-292
  8. Kosutarak, P., A. Kanazawa, S. Teshima and S. Koshio. 1995. Interactions of L-ascorbyl-2-phosphate-Mg and n-3 highly unsaturated fatty acids on Japanese flounder juveniles. Fish. Sci. 61:860-866. https://doi.org/10.2331/suisan.61.860
  9. Li., Y. and R. T. Lovell. 1985. Elevated levels of dietary ascorbic acid increase immune responses in channel catfish. J. Nutr. 115:123-131.
  10. Lim, C. and R. T. Lovell. 1978. Pathology of the vitamin C deficiency syndrome in channel catfish, Ictalurus punctatus. J. Nutr. 108:1137-1146.
  11. Lin, M. F. and S. Y. Shiau. 2005. Dietary L-ascorbic acid affects growth, nonspecific immune responses and disease resistance in juvenile grouper, Epinephelus malabaricus. Aquaculture 244:215-221. https://doi.org/10.1016/j.aquaculture.2004.10.026
  12. NRC (National Research Council Nutrient Requirements of Fish). 1993. National Academic Press, Washington, DC, USA.
  13. Navarre, O. and J. E. Halver. 1989. Disease resistance and humoral antibody production in rainbow trout fed high levels of vitamin C. Aquaculture 79:207-221. https://doi.org/10.1016/0044-8486(89)90462-6
  14. Okorie, O. E., S. H. Ko, S. G. Go, S. H. Lee, J. Y. Bae, K. M. Han and S. C. Bai. 2008. Preliminary study of the optimum dietary ascorbic acid level in sea cucumber, Apostichopus japonicus (Selenka). J. World Aquac. Soc. 39(6):758-765. https://doi.org/10.1111/j.1749-7345.2008.00211.x
  15. Ren, T., S. Koshio, S. Teshima, M. Ishikawa, M. Alam, A. Panganiban, Y. Y. Moe, T. Kojima and H. Tokumitsu. 2005. Optimum dietary level of L-ascorbic acid for Japanese eel, Anguilla japonica. J. World Aquac. Soc. 36(4):437-443. https://doi.org/10.1111/j.1749-7345.2005.tb00391.x
  16. Robbins, K. R., H. W. Norton and D. H. Baker. 1979. Estimation of nutrient requirements from growth data. J. Nutr. 109:1710-1714.
  17. Sato, P., M, Nishikimi and S. Udenfriend. 1976. Is L-gulonolactone-oxidase the only enzyme missing in animals subject to scurvy? Biochem. Biophys. Res. Commun. 71:293-299. https://doi.org/10.1016/0006-291X(76)90281-3
  18. Shiau, S. Y. and T. S. Hsu. 1995. L-Ascorbyl-2-sulfate has equal antiscorbutic activity as L-ascorbyl-2-monophosphate for tilapia, Oreochromis niloticus${\times}$O. aureus. Aquaculture 133:147-157. https://doi.org/10.1016/0044-8486(95)00017-V
  19. Shiau, S. Y. and T. S. Hsu. 1999. Quantification of vitamin C requirement for juvenile hybrid tilapia, Oreochromis niloticus ${\times}$Oreochromis aureus, with L-ascorbyl-2-monophosphate-Na and L-ascorbyl-2-monophosphate-Mg. Aquaculture 175:317-326. https://doi.org/10.1016/S0044-8486(99)00103-9
  20. Soliman, A. K., K. Jauncey and R. J. Roberts. 1986. The effect of varying forms of dietary ascorbic acid on the nutrition of juvenile tilapias, Oreochromis niloticus. Aquaculture 52:1-10. https://doi.org/10.1016/0044-8486(86)90101-8
  21. Soliman, A. K., K. Jauncey and R. J. Roberts. 1987. Stability of L-ascorbic acid (vitamin C) and its forms in fish feeds during processing, storage and leaching. Aquaculture 60:73-83. https://doi.org/10.1016/0044-8486(87)90358-9
  22. Tolbert, B. M. 1979. Ascorbic acid metabolism and physiological function. Int. J. Vitam. Nutr. Res. 19:127-142.
  23. Waagbo, R., J. Glette, E. Raa-Nilsen and K. Sandnes. 1993. Dietary vitamin C, immunity and disease resistance in Atlantic salmon, Salmo salar. Fish Physiol. Biochem. 12:61-73. https://doi.org/10.1007/BF00004323
  24. Wang, X. J., K. W. Kim and S. C. Bai. 2002. Effects of different dietary levels of L-ascorbyl-2-polyphosphate on growth and tissue vitamin C concentrations in juvenile olive flounder, Paralichthys olivaceus. Aquacult. Res. 33:261-267. https://doi.org/10.1046/j.1355-557x.2002.00669.x
  25. Wang, X. J., K. W. Kim and S. C. Bai. 2003a. Comparison of L-ascorbyl-2-monophosphate-Ca with L-ascorbyl-2-monophosphate-Na/Ca on growth and tissue ascorbic acid concentrations in Korean rockfish, Sebastes schlegeli. Aquaculture 225:387-395. https://doi.org/10.1016/S0044-8486(03)00303-X
  26. Wang, X. J., K. W. Kim, S. C. Bai, M. D. Huh and B. Y. Cho. 2003b. Effects of the different levels of dietary vitamin C on growth and tissue ascorbic acid changes in parrot fish, Oplegnathus fasciatus. Aquaculture 215:203-211. https://doi.org/10.1016/S0044-8486(02)00042-X
  27. Wilson, R. P., W. E. Poe and E. H. Robinson. 1989. Evaluation of L-ascorbyl-2-polyphosphate (C2PP) as a dietary ascorbic acid source for channel catfish. Aquaculture 81:129-136. https://doi.org/10.1016/0044-8486(89)90238-X

Cited by

  1. The beneficial effects of ascorbic acid during chlorpyrifos-induced oxidative stress and histopathological changes in Oreochromis spilurus vol.6, pp.3, 2014, https://doi.org/10.1007/s13530-014-0206-9
  2. Vitamin C supplementation to optimize growth, health and stress resistance in aquatic animals pp.17535123, 2016, https://doi.org/10.1111/raq.12163
  3. Effects of dietary vitamin C on skeleton abnormalities, blood biochemical factors, haematocrit, growth, survival and stress response of Cyprinus carpio fry vol.25, pp.2, 2017, https://doi.org/10.1007/s10499-016-0080-3
  4. Beneficial roles of feed additives as immunostimulants in aquaculture: a review pp.17535123, 2018, https://doi.org/10.1111/raq.12209
  5. A Review on Japanese Eel (Anguilla japonica) Aquaculture, With Special Emphasis on Nutrition vol.27, pp.2, 2012, https://doi.org/10.1080/23308249.2019.1583165
  6. The influence of dietary coenzyme Q10 and vitamin C on the growth rate, immunity, oxidative-related genes, and the resistance against Streptococcus agalactiae of Nile tilapia (Oreochromis niloticus) vol.531, pp.None, 2012, https://doi.org/10.1016/j.aquaculture.2020.735862