DOI QR코드

DOI QR Code

Effect of Exogenous Fibrolytic Enzyme Application on the Microbial Attachment and Digestion of Barley Straw In vitro

  • Wang, Y. (Agriculture and Agri-Food Canada, Lethbridge Research Centre) ;
  • Ramirez-Bribiesca, J.E. (Agriculture and Agri-Food Canada, Lethbridge Research Centre) ;
  • Yanke, L.J. (Agriculture and Agri-Food Canada, Lethbridge Research Centre) ;
  • Tsang, A. (Centre for Structural and Functional Genomics, Concordia University) ;
  • McAllister, T.A. (Agriculture and Agri-Food Canada, Lethbridge Research Centre)
  • Received : 2011.05.27
  • Accepted : 2011.08.05
  • Published : 2012.01.01

Abstract

The effects of exogenous fibrolytic enzymes (EFE; a mixture of two preparations from Trichoderma spp., with predominant xylanase and ${\beta}$-glucanase activities, respectively) on colonization and digestion of ground barley straw and alfalfa hay by Fibrobacter succinogenes S85 and Ruminococcus flavefaciens FD1 were studied in vitro. The two levels (28 and 280 ${\mu}g$/ml) of EFE tested and both bacteria were effective at digesting NDF of hay and straw. With both substrates, more NDF hydrolysis (p<0.01) was achieved with EFE alone at 280 than at 28 ${\mu}g$/ml. A synergistic effect (p<0.01) of F. succinogenes S85 and EFE on straw digestion was observed at 28 but not 280 ${\mu}g$/ml of EFE. Strain R. flavefaciens FD1 digested more (p<0.01) hay and straw with higher EFE than with lower or no EFE, but the effect was additive rather than synergistic. Included in the incubation medium, EFE showed potential to improve fibre digestion by cellulolytic ruminal bacteria. In a second batch culture experiment using mixed rumen microbes, DM disappearance (DMD), gas production and incorporation of $^{15}N$ into particle-associated microbial N ($^{15}N$-PAMN) were higher (p<0.001) with ammoniated (5% w/w; AS) than with native (S) ground barley straw. Application of EFE to the straws increased (p<0.001) DMD and gas production at 4 and 12 h, but not at 48 h of the incubation. EFE applied onto S increased (p<0.01) $^{15}N$-PAMN at 4 h only, but EFE on AS increased (p<0.001) $^{15}N$-PAMN at all time points. Prehydrolysis increased (p<0.01) DMD from both S and AS at 4 and 12 h, but reduced (p<0.01) $^{15}N$-PAMN in the early stage (4 h) of the incubation, as compared to non-prehydrolyzed samples. Application of EFE to barley straw increased rumen bacterial colonization of the substrate, but excessive hydrolytic action of EFE prior to incubation decreased it.

Keywords

References

  1. Bae, H. D., T. McAllister, J. Yanke, K. J. Cheng and A. D. Muir. 1993. Effects of condensed tannins on endoglucanase activity and filter paper digestion by Fibrobacter succinogenes S85. Appl. Environ. Microbiol. 59:2132-2138.
  2. Beauchemin, K. A., D. Colombatto, D. P. Morgavi and W. Z. Yang. 2003. Use of exogenous fibrolytic enzymes to improve feed utilization by ruminants. J. Anim. Sci. 81:E37-E47.
  3. Bhat, S., R. J. Wallace and E. R. Orskov. 1990. Adhesion of cellulolytic ruminal bacteria to barley straw. Appl. Environ. Microbiol. 56:2698-2703.
  4. CCAC. 1993. Canadian Council of Animal Care. Guide to the care and use of experimental animals, CCAC, Ottawa, ON.
  5. Chesson, A., C. S. Stewaert and R. J. Wallace. 1982. Influence of plant phenolic acids on growth and cellulolytic activity of rumen bacteria. Appl. Environ. Microbiol. 44:597-603.
  6. Collins, G. F. and M. T. Yokoyama. 1980. Gas-liquid chromatography for evaluating polysaccharide degradation by Ruminococcus flavefaciens C94 and Bacteroides succinogenes S85. Appl. Environ. Microbiol. 9:566-571.
  7. Eun, J.-S., K. A. Beachemin, S. H. Hong and M. W. Bauer. 2006. Exogenous enzymes added to untreated or ammoniated rice straw: Effects on in vitro fermentation characteristics and degradability. Anim. Feed Sci. Technol. 131:86-101.
  8. Eun, J.-S., K. A. Beauchemin and H. Schulze. 2007. Use of exogenous fibrolytic enzymes to enhance in vitro fermentation of alfalfa hay and corn silage. J. Dairy Sci. 90:1440-1451. https://doi.org/10.3168/jds.S0022-0302(07)71629-6
  9. Erfle, J. D. and R. M. Teather. 1991. Isolation and properties of a (1,3)-p-D-glucanase from Ruminococcus flavefaciens. Appl. Environ. Microbiol. 57:122-129.
  10. Feng, P., C. W. Hunt, G. T. Pritchard and W. E. Julien. 1996. Effect of enzyme preparations on in situ and in vitro degradation and in vivo digestive characteristics of mature cool-season grass forage in beef steers. J. Anim. Sci. 74:1349-1357.
  11. Fahey, G. C., L. D. Bourquin, E. C. Titgemeyer and D. G. Atwell. 1993. Postharvest treatment of fibrous feedstuffs to improve their nutritive value. In: Forage Cell Wall Structure and Digestibility (Ed. H. G. Jung, D. R. Buxton, R. D. Hatfield, and J. Ralph). American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc., Madison, WI. pp. 715-766.
  12. Flint, H. J., C. A. McPherson and J. Bisset. 1989. Molecular cloning of genes from Ruminococcus flavefaciens encoding xylanase and 1(1-3,1-4) glucanase activities. Appl. Environ. Microbiol. 55:1230-1233.
  13. Gado, H. M., A. Z. M. Salem, H. P. Robinson and M. Hassan. 2009. Influence of exogenous enzymes on nutrient digestibility, extent of ruminal fermentation as well as milk production and composition in dairy cows. Anim. Feed Sci. Technol. 154:36-46. https://doi.org/10.1016/j.anifeedsci.2009.07.006
  14. Gallardo, I., R. Barcena, J. M. Pinos-Rodríguez, M. Cobos, L. Carreon and M. E. Ortega. 2010. Influence of exogenous fibrolytic enzymes on in vitro and in sacco degradation of forages for ruminants. Italian J. Anim. Sci. 9:34-38.
  15. Giraldo, L. A., M. L. Tejido, M. J. Ranilla, S. Ramos and M. D. Carro. 2008. Influence of direct-fed fibrolytic enzymes on diet digestibility and ruminal activity in sheep fed a grass hay-based diet. J. Anim. Sci. 86. 86:1617-1623.
  16. Hartley, R. D. and D. E. Akin. 1989. Effect of forage cell wall phenolic acids and derivatives on rumen microflora. J. Sci. Food Agric. 49:405-411. https://doi.org/10.1002/jsfa.2740490403
  17. Jalilvand, G., N. E. Odongo, S. Lopez, A. Naserian, R. Valizadeh, S. F. Eftekhar, E. Kebreab and J. France. 2008. Effects of different levels of an enzyme mixtures on in vitro gas production parameters of contrasting forage. Anim. Feed Sci. Technol. 146:289-301. https://doi.org/10.1016/j.anifeedsci.2008.01.007
  18. Kerley, M. S., G. C. Fahey, L. L. Berger, J. M. Gould and F. L. Baker. 1985. Alkaline hydrogen peroxide treatment unlocks energy in agricultural by-products. Science 230:820-822. https://doi.org/10.1126/science.230.4727.820
  19. Martin, S. A. and G. G. Blake. 1989. Effects of phenolic compounds on a commercial hemicellulase and two cellulases. Nutr. Reprod. Int. 40:685-693.
  20. McAllister, T. A., H. D. Bae, G. A. Jones and K.-J. Cheng. 1994. Microbial attachment and feed digestion in the rumen. J. Anim. Sci. 72:3004-3018.
  21. McAllister, T. A., A. N. Hristov, K. A. Beauchemin, L. M. Rode and K. J. Cheng. 2001. Enzymes in ruminant diets. In: Enzymes in Farm Animal Nutrition (Ed. M. R. Bedford and G. G. Partridge). CABI Publishing, CAB International, UK. pp. 273-298.
  22. Menk, K. H., L. Raab, A. Salewski, H. Steingass, D. Fritz and W. Scneider. 1979. The estimation of digestibility and metabolisable energy content of ruminant feedstuffs from the gas production when they incubated with rumen liquor in vitro. J. Agric. Sci. 93:217-222. https://doi.org/10.1017/S0021859600086305
  23. Morgavi, D. P., K. A. Beauchemin, V. L. Nsereko, L. M. Rode, T. A. McAllister and Y. Wang. 2004. Trichoderma enzymes promote Fibrobacter succinogenes S85 adhesion to, and degradation of, complex substrate but not pure cellulose. J. Sci. Food Agric. 84:1083-1090. https://doi.org/10.1002/jsfa.1790
  24. Scott, H. W. and B. A. Dehority. 1965. Vitamin requirements of several cellulolytic rumen bacteria. J. Bacteriol. 89:1169-1175.
  25. SAS. 2007. User's Guide: Statistics, Version 9.6th Edition. 2007. SAS Inst., Inc., Cary, NC.
  26. Saluzzi, L., A. Smith and C. S. Stewart. 1993. Analysis of bacterial phospholipid markers and plant monosaccharides during forage degradation by Ruminococcus flavefaciens and Fibrobacter succinogenes in co-culture. J. Gen. Microbiol. 139:2865. https://doi.org/10.1099/00221287-139-11-2865
  27. Van Soest, P. J., J. B. Robertson and B. A. Lewis. 1991. Methods of dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  28. Varel, V. H., K. K. Kreikemeier, H. G. Jung and R. D. Hatfield. 1993. In vitro stimulation of forage fiber degradation by ruminal microorganisms with Aspergillus oryzae fermentation extract. Appl. Environ. Microbiol. 59:3171-3176.
  29. Wang, Y., T. A. McAllister, L. M. Rode, K. A. Beauchemin, D. P. Morgavi, V. L. Nsereko, A. D. Iwaasa and W. Yang. 2001. Effect of enzymes supplementation on the ruminal fermentation and microbial protein synthesis in Rusitec. Br. J. Nutr. 85:325-332. https://doi.org/10.1079/BJN2000277
  30. Wang, Y., T. A. McAllister, L. M. Rode, K. A. Beauchemin, D. P. Morgavi, V. L. Nsereko, A. D. Iwaasa and W. Yang. 2002. Effect of exogenous fibrolytic enzymes on epiphytic microbial populations and in vitro silage digestion. J. Sci. Food Agric. 82:760-768. https://doi.org/10.1002/jsfa.1103
  31. Wang, Y., T. A. McAllister, J. Baah, R. Wilde, K. A. Beauchemin, L. M. Rode, J. A. Shelford, G. Kamande and K.-J. Cheng. 2003. Effects of Tween 80 on in vitro fermentation of silages and interactive effects of Tween 80, monensin and exogenous fibrolytic enzymes on growth performance by feedlot cattle. Asian-Aust. J. Anim. Sci. 16:968-978. https://doi.org/10.5713/ajas.2003.968
  32. Wang, Y., B. M. Spratling, D. R. Wiedmeier and T. A. McAllister. 2004. Effect of alkali pre-treatment of wheat straw on the efficacy of exogenous fibrolytic enzymes. J. Anim. Sci. 82:198-208.
  33. Windham, W. R. and D. E. Akin. 1984. Rumen fungi and forage fiber degradation. Appl. Environ. Microbiol. 48:473-476.

Cited by

  1. Effects of Methylcellulose on Fibrolytic Bacterial Detachment and In vitro Degradation of Rice Straw vol.26, pp.10, 2013, https://doi.org/10.5713/ajas.2013.13220
  2. Effect of non-starch-polysaccharide-degrading enzymes as feed additive on the rumen bacterial population in non-lactating cows quantified by real-time PCR vol.97, pp.6, 2013, https://doi.org/10.1111/jpn.12020
  3. Considerations on the Use of Exogenous Fibrolytic Enzymes to Improve Forage Utilization vol.2014, pp.1537-744X, 2014, https://doi.org/10.1155/2014/247437
  4. In vitro evaluation of total mixed ration supplemented with exogenous fibrolytic enzymes for crossbred cows vol.10, pp.3, 2017, https://doi.org/10.14202/vetworld.2017.281-285
  5. Meta-analysis: effects of exogenous fibrolytic enzymes in ruminant diets vol.46, pp.1, 2018, https://doi.org/10.1080/09712119.2017.1399135
  6. The determination of in vitro gas production and metabolizable energy value of rice straw treated with exogenous fibrolytic enzymes vol.40, pp.13036181, 2016, https://doi.org/10.3906/vet-1601-113
  7. Isolation and identification of cellulolytic bacteria from gastrointestinal tract of Arabian horse and investigation of their effect on the nutritional value of wheat straw vol.127, pp.2, 2012, https://doi.org/10.1111/jam.14251
  8. Effects of a recombinant fibrolytic enzyme on fiber digestion, ruminal fermentation, nitrogen balance, and total tract digestibility of heifers fed a high forage diet1 vol.97, pp.8, 2012, https://doi.org/10.1093/jas/skz216
  9. In vitro ruminal fermentation of fenugreek (Trigonella foenum-graecum L.) produced less methane than that of alfalfa (Medicago sativa) vol.34, pp.4, 2012, https://doi.org/10.5713/ajas.20.0114