DOI QR코드

DOI QR Code

Evaluation of Single Nucleotide Polymorphisms (SNPs) Genotyped by the Illumina Bovine SNP50K in Cattle Focusing on Hanwoo Breed

  • Dadi, Hailu (Department of Animal Science, Chungbuk National University) ;
  • Kim, Jong-Joo (School of Biotechnology, Yeungnam University) ;
  • Yoon, Du-Hak (Department of Animal Science, Kyungbook National University) ;
  • Kim, Kwan-Suk (Department of Animal Science, Chungbuk National University)
  • Received : 2011.07.21
  • Accepted : 2011.09.18
  • Published : 2012.01.01

Abstract

In the present study, we evaluated the informativeness of SNPs genotyped by the Illumina Bovine SNP50K assay in different cattle breeds. To investigate these on a genome-wide scale, we considered 52,678 SNPs spanning the whole autosomal and X chromosomes in cattle. Our study samples consists of six different cattle breeds. Across the breeds approximately 72 and 6% SNPs were found polymorphic and fixed or close to fix in all the breeds, respectively. The variations in the average minor allele frequency (MAF) were significantly different between the breeds studied. The level of average MAF observed in Hanwoo was significantly lower than the other breeds. Hanwoo breed also displayed the lowest number of polymorphic SNPs across all the chromosomes. More importantly, this study indicated that the Bovine SNP50K assay will have reduced power for genome-wide association studies in Hanwoo as compared to other cattle breeds. Overall, the Bovine SNP50K assay described in this study offer a useful genotyping platform for mapping quantitative trait loci (QTLs) in the cattle breeds. The assay data represent a vast and generally untapped resource to assist the investigation of the complex production traits and the development of marker-assisted selection programs.

Keywords

References

  1. Bovine Genome Sequencing and Analysis Consortium, C. G. Elsik, R. L. Tellam and K. C. Worley. 2009. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324:522-528. https://doi.org/10.1126/science.1169588
  2. Cohen, J. C., R. S. Kiss, A. Pertsemlidis, Y. L. Marcel, R. McPherson and H. H. Hobbs. 2004. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 305:869-872. https://doi.org/10.1126/science.1099870
  3. Decker, J. E., J. C. Pires, G. C. Conant, S. D. McKay, M. P. Heaton, K. Chen, A. Cooper, J. Vilkki, C. M. Seabury, A. R. Caetano, G. S. Johnson, R. A. Brenneman, O. Hanotte, L. S. Eggert, P. Wiener, J. J. Kim, K. S. Kim, T. S. Sonstegard, C. P. Van Tassell, H. L. Neibergs, J. C. McEwan, R. Brauning, L. L. Coutinho, M. E. Babar, G. A. Wilson, M. C. McClure, M. M. Rolf, J. Kim, R. D. Schnabel and J. F. Taylor. 2009. Resolving the evolution of extant and extinct ruminants with high-throughput phylogenomics. Proc. Natl. Acad. Sci. USA. 106: 18644-18649. https://doi.org/10.1073/pnas.0904691106
  4. Falconer, D. S. and T. F. C. Mackay. 1997. Introduction to quantitative genetics. 4th Edition. Longman limited.
  5. Freking, B. A., S. K. Murphy, A. A. Wylie, S. J. Rhodes, J. W. Keele, K. A. Leymaster, R. L. Jirtle and T. P. Smith. 2002. Identification of the single base change causing the callipyge muscle hypertrophy phenotype, the only known example of polar overdominance in mammals. Genome Res. 12:1496-1506. https://doi.org/10.1101/gr.571002
  6. Goddard, M. E. 2008. Genomic selection: prediction of accuracy and maximization of long term response. Genetica 136:245-257.
  7. Graur, D. and Wen Hsiun Li. 2000. Foundementals of molecular evolution. 2nd ED. Li. Sinauer Association inc., Sunderland, MA.
  8. Grobet, L., L. J. Martin, D. Poncelet, D. Pirottin, B. Brouwers, J. Riquet, A. Schoeberlein, S. Dunner, F. Ménissier, J. Massabanda, R. Fries, R. Hanset and M. Georges. 1997. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat. Genet. 17:71-74. https://doi.org/10.1038/ng0997-71
  9. Gupta, P. K., J. K. Roy and M. Prasad. 2001. Single nucleotide polymorphisms: a new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr. Sci. 80:524-535.
  10. Hayes, B. J., P. J. Bowman, A. J. Chamberlain and M. E. Goddard. 2009. Invited review: Genomic selection in dairy cattle: progress and challenges. J. Dairy Sci. 92:433-443. https://doi.org/10.3168/jds.2008-1646
  11. Kruglyak, L. 1997. The use of a genetic map of biallelic markers in linkage studies. Nat. Genet. 17:21-24. https://doi.org/10.1038/ng0997-21
  12. Matukumalli, L. K., C. T. Lawley, R. D. Schnabel, J. F. Taylor, M. F. Allan, M. P. Heaton, J. O'Connell, S. S. Moore, T. P. Smith, T. S. Sonstegard and C. P. Van Tassell. 2009. Development and characterization of a high density SNP genotyping assay for cattle. PLoS One. 4(4):e5350. https://doi.org/10.1371/journal.pone.0005350
  13. McPherron, A. C. and S. J. Lee. 1997. Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. USA. 94:12457-12461. https://doi.org/10.1073/pnas.94.23.12457
  14. Melka, H. D., E. Y. Jeon, S. W. Kim, J. B. Han, D. Yoon and S. K. Kim. 2011. Identification of genomic difference between Hanwoo and Holstein breeds using the Illumina Bovine SNP50K BeadChip. Genomics & Informatics 9:69-73. https://doi.org/10.5808/GI.2011.9.2.69
  15. Meuwissen, T. H. E., B. J. Hayes and M. E. Goddard. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819-1829.
  16. Micklos, D. A., G. A. Freyer and D. A. Crotty. 2003. DNA science, A first course. 2nd Edition. Cold Spring Harbor Laboratory Press.
  17. Smit, M., K. Segers, L. G. Carrascosa, T. Shay, F. Baraldi, G. Gyapay, G. Snowder, M. Georges, N. Cockett and C. Charlier. 2003. Mosaicism of Solid Gold supports the causality of a noncoding A-to-G transition in the determinism of the callipyge phenotype. Genetics 163:453-456.
  18. VanRaden, P. M., C. P. Van Tassell, G. R. Wiggans, T. S. Sonstegard, R. D. Schnabel, J. F. Taylor and F. S. Schenkel. 2009. Invited review: Reliability of genomic predictions for North American Holstein bulls. J. Dairy Sci. 92:16-24. https://doi.org/10.3168/jds.2008-1514
  19. Zimin, A. V., A. L. Delcher, L. Florea, D. R. Kelley, M. C. Schatz, D. Puiu, F. Hanrahan, G. Pertea, C. P. Van Tassell, T. S. Sonstegard, G. Marcais, M. Roberts, P. Subramanian, J. A. Yorke and S. L. Salzberg. 2009. A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol. 10:R42. https://doi.org/10.1186/gb-2009-10-4-r42

Cited by

  1. Comparison of SNP Variation and Distribution in Indigenous Ethiopian and Korean Cattle (Hanwoo) Populations vol.10, pp.3, 2012, https://doi.org/10.5808/GI.2012.10.3.200
  2. Genome-wide Single Nucleotide Polymorphism Analyses Reveal Genetic Diversity and Structure of Wild and Domestic Cattle in Bangladesh vol.27, pp.10, 2014, https://doi.org/10.5713/ajas.2014.14160
  3. Evaluation of Bovine High-Density SNP Genotyping Array in Indigenous Dairy Cattle Breeds pp.1532-2378, 2018, https://doi.org/10.1080/10495398.2017.1329150
  4. Associations between Bovine β-Defensin 4 Genotypes and Production Traits of Polish Holstein-Friesian Dairy Cattle vol.9, pp.10, 2019, https://doi.org/10.3390/ani9100723
  5. Revelation of genomic breed composition in a crossbred cattle of India with the help of Bovine50K BeadChip vol.112, pp.2, 2020, https://doi.org/10.1016/j.ygeno.2019.08.025
  6. The genetic polymorphisms of melanocortin-4 receptor gene are associated with carcass quality traits in a Chinese indigenous beef cattle breed vol.132, pp.None, 2012, https://doi.org/10.1016/j.rvsc.2020.06.011
  7. Association of hormone-sensitive lipase (HSL) gene polymorphisms with the intramuscular fat content in two Chinese beef cattle breeds vol.112, pp.6, 2012, https://doi.org/10.1016/j.ygeno.2020.06.037
  8. Genome analyses revealed genetic admixture and selection signatures in Bos indicus vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-01144-2